Cargando…

Data Fusion in Information Retrieval

The technique of data fusion has been used extensively in information retrieval due to the complexity and diversity of tasks involved such as web and social networks, legal, enterprise, and many others. This book presents both a theoretical and empirical approach to data fusion. Several typical data...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Wu, Shengli (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Adaptation, Learning, and Optimization, 13
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-28866-1
003 DE-He213
005 20220120114713.0
007 cr nn 008mamaa
008 120405s2012 gw | s |||| 0|eng d
020 |a 9783642288661  |9 978-3-642-28866-1 
024 7 |a 10.1007/978-3-642-28866-1  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Wu, Shengli.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Data Fusion in Information Retrieval  |h [electronic resource] /  |c by Shengli Wu. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XII, 228 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Adaptation, Learning, and Optimization,  |x 1867-4542 ;  |v 13 
505 0 |a Introduction -- Evaluation of Retrieval Results -- Score Normalization -- Observations and Analyses -- The Linear Combination Method -- A Geometric Framework for Data Fusion -- Ranking-Based Fusion -- Fusing Results from Overlapping Databases -- Application of the Data Fusion Technique. 
520 |a The technique of data fusion has been used extensively in information retrieval due to the complexity and diversity of tasks involved such as web and social networks, legal, enterprise, and many others. This book presents both a theoretical and empirical approach to data fusion. Several typical data fusion algorithms are discussed, analyzed and evaluated. A reader will find answers to the following questions, among others: -          What are the key factors that affect the performance of data fusion algorithms significantly? -          What conditions are favorable to data fusion algorithms? -          CombSum and CombMNZ, which one is better? and why? -          What is the rationale of using the linear combination method? -          How can the best fusion option be found under any given circumstances? 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Data mining. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Data Mining and Knowledge Discovery. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642448010 
776 0 8 |i Printed edition:  |z 9783642288678 
776 0 8 |i Printed edition:  |z 9783642288654 
830 0 |a Adaptation, Learning, and Optimization,  |x 1867-4542 ;  |v 13 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-28866-1  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)