Cargando…

Advances in Intelligent Signal Processing and Data Mining Theory and Applications /

The book presents some of the most efficient statistical and deterministic methods for information processing and applications in order to extract targeted information and find hidden patterns. The techniques presented range from Bayesian approaches and their variations such as sequential Monte Carl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Georgieva, Petia (Editor ), Mihaylova, Lyudmila (Editor ), Jain, Lakhmi C. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Studies in Computational Intelligence, 410
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-28696-4
003 DE-He213
005 20220119035233.0
007 cr nn 008mamaa
008 120726s2013 gw | s |||| 0|eng d
020 |a 9783642286964  |9 978-3-642-28696-4 
024 7 |a 10.1007/978-3-642-28696-4  |2 doi 
050 4 |a T1-995 
072 7 |a TBC  |2 bicssc 
072 7 |a TEC000000  |2 bisacsh 
072 7 |a TBC  |2 thema 
082 0 4 |a 620  |2 23 
245 1 0 |a Advances in Intelligent Signal Processing and Data Mining  |h [electronic resource] :  |b Theory and Applications /  |c edited by Petia Georgieva, Lyudmila Mihaylova, Lakhmi C Jain. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XIV, 354 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 410 
505 0 |a From the content: Introduction to Intelligent Signal Processing and Data Mining -- Monte Carlo-Based Bayesian Group Object Tracking and Causal Reasoning -- A Sequential Monte Carlo Method for Multi-Target Tracking with the Intensity Filter -- Sequential Monte Carlo Methods for Localisation inWireless Networks -- A Sequential Monte Carlo Approach for Brain Source Localization. 
520 |a The book presents some of the most efficient statistical and deterministic methods for information processing and applications in order to extract targeted information and find hidden patterns. The techniques presented range from Bayesian approaches and their variations such as sequential Monte Carlo methods, Markov Chain Monte Carlo filters, Rao Blackwellization, to the biologically inspired paradigm of Neural Networks and decomposition techniques such as Empirical Mode Decomposition, Independent Component Analysis and Singular Spectrum Analysis.   The book is directed to the research students, professors, researchers and practitioners interested in exploring the advanced techniques in intelligent signal processing and data mining paradigms.  . 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 1 4 |a Technology and Engineering. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Georgieva, Petia.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Mihaylova, Lyudmila.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Jain, Lakhmi C.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642286971 
776 0 8 |i Printed edition:  |z 9783642439803 
776 0 8 |i Printed edition:  |z 9783642286957 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 410 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-28696-4  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)