Cargando…

Reinforcement Learning State-of-the-Art /

Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement l...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Wiering, Marco (Editor ), van Otterlo, Martijn (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Adaptation, Learning, and Optimization, 12
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Continous State and Action Spaces
  • Relational and First-Order Knowledge Representation
  • Hierarchical Approaches
  • Predictive Approaches
  • Multi-Agent Reinforcement Learning
  • Partially Observable Markov Decision Processes (POMDPs)
  • Decentralized POMDPs (DEC-POMDPs)
  • Features and Function Approximation
  • RL as Supervised Learning (or batch learning)
  • Bounds and complexity
  • RL for Games
  • RL in Robotics
  • Policy Gradient Techniques
  • Least Squares Value Iteration
  • Models and Model Induction
  • Model-based RL
  • Transfer Learning in RL
  • Using of and extracting Knowledge in RL
  • Biological or Psychological Background
  • Evolutionary Approaches
  • Closing chapter, prospects, future issues.