Cargando…

Almost Periodic Solutions of Impulsive Differential Equations

Impulsive differential equations are suitable for the mathematical simulation of evolutionary processes in which the parameters undergo relatively long periods of smooth variation followed by short-term rapid changes (that is, jumps) in their values. Processes of this type are often investigated in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Stamov, Gani T. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Lecture Notes in Mathematics, 2047
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-27546-3
003 DE-He213
005 20220115235407.0
007 cr nn 008mamaa
008 120308s2012 gw | s |||| 0|eng d
020 |a 9783642275463  |9 978-3-642-27546-3 
024 7 |a 10.1007/978-3-642-27546-3  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Stamov, Gani T.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Almost Periodic Solutions of Impulsive Differential Equations  |h [electronic resource] /  |c by Gani T. Stamov. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XX, 217 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2047 
505 0 |a 1 Impulsive Differential Equations and Almost Periodicity -- 2 Almost Periodic Solutions -- 3 Lyapunov Method and Almost Periodicity -- 4 Applications. 
520 |a Impulsive differential equations are suitable for the mathematical simulation of evolutionary processes in which the parameters undergo relatively long periods of smooth variation followed by short-term rapid changes (that is, jumps) in their values. Processes of this type are often investigated in various fields of science and technology. The question of the existence and uniqueness of almost periodic solutions of differential equations is an age-old problem of great importance. The qualitative theory of impulsive differential equations is currently undergoing rapid development in relation to the investigation of various processes which are subject to impacts during their evolution, and many findings on the existence and uniqueness of almost periodic solutions of these equations are being made. This book systematically presents findings related to almost periodic solutions of impulsive differential equations and illustrates their potential applications. 
650 0 |a Differential equations. 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 0 |a Mathematics. 
650 1 4 |a Differential Equations. 
650 2 4 |a Difference and Functional Equations. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642275456 
776 0 8 |i Printed edition:  |z 9783642275470 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2047 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-27546-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)