Cargando…

Data Fusion: Concepts and Ideas

"Data Fusion: Concepts and Ideas" provides a comprehensive introduction to the concepts and idea of multisensor data fusion. This textbook is an extensively revised second edition of the author's successful book: "Multi-Sensor Data Fusion: An Introduction". The book is self-...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mitchell, H B. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:2nd ed. 2012.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-27222-6
003 DE-He213
005 20220116005913.0
007 cr nn 008mamaa
008 120209s2012 gw | s |||| 0|eng d
020 |a 9783642272226  |9 978-3-642-27222-6 
024 7 |a 10.1007/978-3-642-27222-6  |2 doi 
050 4 |a TK5102.9 
072 7 |a TJF  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a TJF  |2 thema 
072 7 |a UYS  |2 thema 
082 0 4 |a 621.382  |2 23 
100 1 |a Mitchell, H B.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Data Fusion: Concepts and Ideas  |h [electronic resource] /  |c by H B Mitchell. 
250 |a 2nd ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XIV, 346 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Sensors -- Architecture -- Common Representational Format -- Spatial Alignment -- Temporal Alignment -- Semantic Alignment -- Radiometric Normalization -- Bayesian Inference -- Parameter Estimation -- Robust Statistics -- Sequential Bayesian Inference -- Bayesian Decision Theory -- Ensemble Learning -- Sensor Management. 
520 |a "Data Fusion: Concepts and Ideas" provides a comprehensive introduction to the concepts and idea of multisensor data fusion. This textbook is an extensively revised second edition of the author's successful book: "Multi-Sensor Data Fusion: An Introduction". The book is self-contained and no previous knowledge of multi-sensor data fusion is assumed. The reader is made familiar with tools taken from a wide range of diverse subjects including: neural networks, signal processing, statistical estimation, tracking algorithms, computer vision and control theory which are combined by using a common statistical framework. As a consequence, the underlying pattern of relationships that exists between the different methodologies is made evident. The book is illustrated with many real-life examples taken from a diverse range of applications and contains an extensive list of modern references. The new completely revised and updated edition includes nearly 70 pages of new material including a full new chapter as well as approximately 30 new sections, 50 new examples and 100 new references as well as additional Matlab code where appropriate. 
650 0 |a Signal processing. 
650 0 |a Computational intelligence. 
650 0 |a Electronics. 
650 1 4 |a Signal, Speech and Image Processing . 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Electronics and Microelectronics, Instrumentation. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642272219 
776 0 8 |i Printed edition:  |z 9783642437304 
776 0 8 |i Printed edition:  |z 9783642272233 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-27222-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)