Cargando…

Spherical Harmonics and Approximations on the Unit Sphere: An Introduction

These notes provide an introduction to the theory of spherical harmonics in an arbitrary dimension as well as an overview of classical and recent results on some aspects of the approximation of functions by spherical polynomials and numerical integration over the unit sphere. The notes are intended...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Atkinson, Kendall (Autor), Han, Weimin (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Lecture Notes in Mathematics, 2044
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-25983-8
003 DE-He213
005 20220116010453.0
007 cr nn 008mamaa
008 120216s2012 gw | s |||| 0|eng d
020 |a 9783642259838  |9 978-3-642-25983-8 
024 7 |a 10.1007/978-3-642-25983-8  |2 doi 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Atkinson, Kendall.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Spherical Harmonics and Approximations on the Unit Sphere: An Introduction  |h [electronic resource] /  |c by Kendall Atkinson, Weimin Han. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a IX, 244 p. 19 illus., 11 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2044 
505 0 |a 1 Preliminaries -- 2 Spherical Harmonics -- 3 Differentiation and Integration over the Sphere -- 4 Approximation Theory -- 5 Numerical Quadrature -- 6 Applications: Spectral Methods. 
520 |a These notes provide an introduction to the theory of spherical harmonics in an arbitrary dimension as well as an overview of classical and recent results on some aspects of the approximation of functions by spherical polynomials and numerical integration over the unit sphere. The notes are intended for graduate students in the mathematical sciences and researchers who are interested in solving problems involving partial differential and integral equations on the unit sphere, especially on the unit sphere in three-dimensional Euclidean space. Some related work for approximation on the unit disk in the plane is also briefly discussed, with results being generalizable to the unit ball in more dimensions. 
650 0 |a Numerical analysis. 
650 0 |a Special functions. 
650 0 |a Approximation theory. 
650 0 |a Integral equations. 
650 0 |a Differential equations. 
650 0 |a Physics. 
650 0 |a Astronomy. 
650 1 4 |a Numerical Analysis. 
650 2 4 |a Special Functions. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Integral Equations. 
650 2 4 |a Differential Equations. 
650 2 4 |a Physics and Astronomy. 
700 1 |a Han, Weimin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642259821 
776 0 8 |i Printed edition:  |z 9783642259845 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2044 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-25983-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)