Cargando…

Lectures on Gaussian Processes

Gaussian processes can be viewed as a  far-reaching infinite-dimensional extension of classical normal random variables. Their theory presents a powerful range of tools for probabilistic modelling in various academic and technical domains such as Statistics, Forecasting, Finance, Information Transmi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Lifshits, Mikhail (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:SpringerBriefs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-24939-6
003 DE-He213
005 20220117003124.0
007 cr nn 008mamaa
008 120110s2012 gw | s |||| 0|eng d
020 |a 9783642249396  |9 978-3-642-24939-6 
024 7 |a 10.1007/978-3-642-24939-6  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Lifshits, Mikhail.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Lectures on Gaussian Processes  |h [electronic resource] /  |c by Mikhail Lifshits. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a X, 121 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8201 
505 0 |a Preface -- 1.Gaussian Vectors and Distributions -- 2.Examples of Gaussian Vectors, Processes and Distributions -- 3.Gaussian White Noise and Integral Representations -- 4.Measurable Functionals and the Kernel -- 5.Cameron-Martin Theorem -- 6.Isoperimetric Inequality -- 7.Measure Concavity and Other Inequalities -- 8.Large Deviation Principle -- 9.Functional Law of the Iterated Logarithm -- 10.Metric Entropy and Sample Path Properties -- 11.Small Deviations -- 12.Expansions of Gaussian Vectors -- 13.Quantization of Gaussian Vectors -- 14.Invitation to Further Reading -- References. 
520 |a Gaussian processes can be viewed as a  far-reaching infinite-dimensional extension of classical normal random variables. Their theory presents a powerful range of tools for probabilistic modelling in various academic and technical domains such as Statistics, Forecasting, Finance, Information Transmission, Machine Learning - to mention just a few. The objective of these Briefs is to present a quick and condensed treatment of the core theory that a reader must understand in order to make his own independent contributions. The primary intended readership are PhD/Masters students and researchers working in pure or applied mathematics. The first chapters introduce essentials of the classical theory of Gaussian processes and measures with the core notions of reproducing kernel, integral representation, isoperimetric property, large deviation principle. The brevity being a priority for teaching and learning purposes, certain technical details and proofs are omitted. The later chapters touch important recent issues not sufficiently reflected in the literature, such as small deviations, expansions, and quantization of processes. In university teaching, one can build a one-semester advanced course upon these Briefs. 
650 0 |a Probabilities. 
650 1 4 |a Probability Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642249402 
776 0 8 |i Printed edition:  |z 9783642249389 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8201 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-24939-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)