Cargando…

Detection and Identification of Rare Audio-visual Cues

Machine learning builds models of the world using training data from the application domain and prior knowledge about the problem. The models are later applied to future data in order to estimate the current state of the world. An implied assumption is that the future is stochastically similar to th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Weinshall, Daphna (Editor ), Anemüller, Jörn (Editor ), van Gool, Luc (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Studies in Computational Intelligence, 384
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-24034-8
003 DE-He213
005 20220120211302.0
007 cr nn 008mamaa
008 111122s2012 gw | s |||| 0|eng d
020 |a 9783642240348  |9 978-3-642-24034-8 
024 7 |a 10.1007/978-3-642-24034-8  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Detection and Identification of Rare Audio-visual Cues  |h [electronic resource] /  |c edited by Daphna Weinshall, Jörn Anemüller, Luc van Gool. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a VIII, 192 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 384 
505 0 |a Introduction -- The DIRAC project -- The detection of incongruent events, project survey and algorithms -- Alternative frameworks to detect meaningful novel events -- Dealing with meaningful novel events, what to do after detection -- How biological systems deal with novel and incongruent events. 
520 |a Machine learning builds models of the world using training data from the application domain and prior knowledge about the problem. The models are later applied to future data in order to estimate the current state of the world. An implied assumption is that the future is stochastically similar to the past. The approach fails when the system encounters situations that are not anticipated from the past experience. In contrast, successful natural organisms identify new unanticipated stimuli and situations and frequently generate appropriate responses. The observation described above lead to the initiation of the DIRAC EC project in 2006. In 2010 a workshop was held, aimed to bring together researchers and students from different disciplines in order to present and discuss new approaches for identifying and reacting to unexpected events in information-rich environments. This book includes a summary of the achievements of the DIRAC project in chapter 1, and a collection of the papers presented in this workshop in the remaining parts. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Multimedia systems. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Multimedia Information Systems. 
700 1 |a Weinshall, Daphna.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Anemüller, Jörn.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a van Gool, Luc.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642269721 
776 0 8 |i Printed edition:  |z 9783642240355 
776 0 8 |i Printed edition:  |z 9783642240331 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 384 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-24034-8  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)