Cargando…

Intersections of Hirzebruch-Zagier Divisors and CM Cycles

This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert mod...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Howard, Benjamin (Autor), Yang, Tonghai (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Lecture Notes in Mathematics, 2041
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-23979-3
003 DE-He213
005 20220114181359.0
007 cr nn 008mamaa
008 120104s2012 gw | s |||| 0|eng d
020 |a 9783642239793  |9 978-3-642-23979-3 
024 7 |a 10.1007/978-3-642-23979-3  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Howard, Benjamin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Intersections of Hirzebruch-Zagier Divisors and CM Cycles  |h [electronic resource] /  |c by Benjamin Howard, Tonghai Yang. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a VIII, 140 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2041 
505 0 |a 1. Introduction -- 2. Linear Algebra -- 3. Moduli Spaces of Abelian Surfaces -- 4. Eisenstein Series -- 5. The Main Results -- 6. Local Calculations. 
520 |a This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex multiplication points and the Hirzebruch-Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series. 
650 0 |a Number theory. 
650 1 4 |a Number Theory. 
700 1 |a Yang, Tonghai.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642239809 
776 0 8 |i Printed edition:  |z 9783642239786 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2041 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-23979-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)