Cargando…

Newton Methods for Nonlinear Problems Affine Invariance and Adaptive Algorithms /

This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite dimension (algebraic systems) and in infinite dimension (ordinary and partial differential equations). Its focus is on local and global Newton methods for direct problem...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Deuflhard, Peter (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Springer Series in Computational Mathematics, 35
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-23899-4
003 DE-He213
005 20220114180928.0
007 cr nn 008mamaa
008 110914s2011 gw | s |||| 0|eng d
020 |a 9783642238994  |9 978-3-642-23899-4 
024 7 |a 10.1007/978-3-642-23899-4  |2 doi 
050 4 |a QA71-90 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Deuflhard, Peter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Newton Methods for Nonlinear Problems  |h [electronic resource] :  |b Affine Invariance and Adaptive Algorithms /  |c by Peter Deuflhard. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XII, 424 p. 49 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Computational Mathematics,  |x 2198-3712 ;  |v 35 
520 |a This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite dimension (algebraic systems) and in infinite dimension (ordinary and partial differential equations). Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. The term 'affine invariance' means that the presented algorithms and their convergence analysis are invariant under one out of four subclasses of affine transformations of the problem to be solved. Compared to traditional textbooks, the distinguishing affine invariance approach leads to shorter theorems and proofs and permits the construction of fully adaptive algorithms. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research. 
650 0 |a Mathematics-Data processing. 
650 0 |a Differential equations. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 0 |a Mathematical optimization. 
650 0 |a Computer science-Mathematics. 
650 1 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Differential Equations. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
650 2 4 |a Optimization. 
650 2 4 |a Mathematical Applications in Computer Science. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642239007 
776 0 8 |i Printed edition:  |z 9783642238987 
830 0 |a Springer Series in Computational Mathematics,  |x 2198-3712 ;  |v 35 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-23899-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)