Cargando…

Spectral Analysis on Graph-like Spaces

Small-radius tubular structures have attracted considerable attention in the last few years, and are frequently used in different areas such as Mathematical Physics, Spectral Geometry and Global Analysis.   In this monograph, we analyse Laplace-like operators on thin tubular structures ("graph-...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Post, Olaf (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Lecture Notes in Mathematics, 2039
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-23840-6
003 DE-He213
005 20220119151807.0
007 cr nn 008mamaa
008 120104s2012 gw | s |||| 0|eng d
020 |a 9783642238406  |9 978-3-642-23840-6 
024 7 |a 10.1007/978-3-642-23840-6  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Post, Olaf.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Spectral Analysis on Graph-like Spaces  |h [electronic resource] /  |c by Olaf Post. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XV, 431 p. 28 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2039 
505 0 |a 1 Introduction -- 2 Graphs and associated Laplacians -- 3 Scales of Hilbert space and boundary triples -- 4 Two operators in different Hilbert spaces -- 5 Manifolds, tubular neighbourhoods and their perturbations -- 6 Plumber's shop: Estimates for star graphs and related spaces -- 7 Global convergence results. 
520 |a Small-radius tubular structures have attracted considerable attention in the last few years, and are frequently used in different areas such as Mathematical Physics, Spectral Geometry and Global Analysis.   In this monograph, we analyse Laplace-like operators on thin tubular structures ("graph-like spaces''), and their natural limits on metric graphs. In particular, we explore norm resolvent convergence, convergence of the spectra and resonances.   Since the underlying spaces in the thin radius limit change, and become singular in the limit, we develop new tools such as   -norm convergence of operators acting in different Hilbert  spaces,   - an extension of the concept of boundary triples to partial  differential operators, and   -an abstract definition of resonances via boundary triples.   These tools are formulated in an abstract framework, independent of the original problem of graph-like spaces, so that they can be applied in many other situations where the spaces are perturbed. 
650 0 |a Mathematical analysis. 
650 0 |a Functional analysis. 
650 0 |a Operator theory. 
650 0 |a Mathematical physics. 
650 0 |a Differential equations. 
650 0 |a Graph theory. 
650 1 4 |a Analysis. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Operator Theory. 
650 2 4 |a Mathematical Physics. 
650 2 4 |a Differential Equations. 
650 2 4 |a Graph Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642238413 
776 0 8 |i Printed edition:  |z 9783642238390 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2039 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-23840-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)