Cargando…

Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry

The theory of random dynamical systems originated from stochastic differential equations. It is intended to provide a framework and techniques to describe and analyze the evolution of dynamical systems when the input and output data are known only approximately, according to some probability distrib...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Mayer, Volker (Autor), Skorulski, Bartlomiej (Autor), Urbanski, Mariusz (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Lecture Notes in Mathematics, 2036
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-23650-1
003 DE-He213
005 20220116005106.0
007 cr nn 008mamaa
008 111024s2011 gw | s |||| 0|eng d
020 |a 9783642236501  |9 978-3-642-23650-1 
024 7 |a 10.1007/978-3-642-23650-1  |2 doi 
050 4 |a QA843-871 
072 7 |a GPFC  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a GPFC  |2 thema 
082 0 4 |a 515.39  |2 23 
100 1 |a Mayer, Volker.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry  |h [electronic resource] /  |c by Volker Mayer, Bartlomiej Skorulski, Mariusz Urbanski. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a X, 112 p. 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2036 
505 0 |a 1 Introduction -- 2 Expanding Random Maps -- 3 The RPF-theorem -- 4 Measurability, Pressure and Gibbs Condition -- 5 Fractal Structure of Conformal Expanding Random Repellers -- 6 Multifractal Analysis -- 7 Expanding in the Mean -- 8 Classical Expanding Random Systems -- 9 Real Analyticity of Pressure. 
520 |a The theory of random dynamical systems originated from stochastic differential equations. It is intended to provide a framework and techniques to describe and analyze the evolution of dynamical systems when the input and output data are known only approximately, according to some probability distribution. The development of this field, in both the theory and applications, has gone in many directions. In this manuscript we introduce measurable expanding random dynamical systems, develop the thermodynamical formalism and establish, in particular, the exponential decay of correlations and analyticity of the expected pressure although the spectral gap property does not hold. This theory is then used to investigate fractal properties of conformal random systems. We prove a Bowen's formula and develop the multifractal formalism of the Gibbs states. Depending on the behavior of the Birkhoff sums of the pressure function we arrive at a natural classification of the systems into two classes: quasi-deterministic systems, which share many properties of deterministic ones; and essentially random systems, which are rather generic and never bi-Lipschitz equivalent to deterministic systems. We show that in the essentially random case the Hausdorff measure vanishes, which refutes a conjecture by Bogenschutz and Ochs. Lastly, we present applications of our results to various specific conformal random systems and positively answer a question posed by Bruck and Buger concerning the Hausdorff dimension of quadratic random Julia sets. 
650 0 |a Dynamical systems. 
650 1 4 |a Dynamical Systems. 
700 1 |a Skorulski, Bartlomiej.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Urbanski, Mariusz.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642236495 
776 0 8 |i Printed edition:  |z 9783642236518 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2036 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-23650-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)