Cargando…

Data Mining: Foundations and Intelligent Paradigms Volume 1: Clustering, Association and Classification /

Data mining is one of the most rapidly growing research areas in computer science and statistics. In Volume 1of this three volume series, we have brought together contributions from some of the most prestigious researchers in the fundamental data mining tasks of clustering, association and classific...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Holmes, Dawn E. (Editor ), Jain, Lakhmi C. (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Intelligent Systems Reference Library, 23
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-23166-7
003 DE-He213
005 20220114222456.0
007 cr nn 008mamaa
008 111108s2012 gw | s |||| 0|eng d
020 |a 9783642231667  |9 978-3-642-23166-7 
024 7 |a 10.1007/978-3-642-23166-7  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Data Mining: Foundations and Intelligent Paradigms  |h [electronic resource] :  |b Volume 1: Clustering, Association and Classification /  |c edited by Dawn E. Holmes, Lakhmi C Jain. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XVI, 336 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4408 ;  |v 23 
505 0 |a Introductory Chapter -- Clustering Analysis in Large Graphs with Rich Attributes -- Temporal Data Mining: Similarity-Profiled Association Pattern -- Bayesian Networks with Imprecise Probabilities: Theory and Application to Classification -- Hierarchical Clustering for Finding Symmetries and Other Patterns in Massive, High Dimensional Datasets -- Randomized Algorithm of Finding the True Number of Clusters Based on Chebychev Polynomial Approximation -- Bregman Bubble Clustering: A Robust Framework for Mining Dense Clusters -- DepMiner: A method and a system for the extraction of significant dependencies -- Integration of Dataset Scans in Processing Sets of Frequent Itemset Queries -- Text Clustering with Named Entities: A Model, Experimentation and Realization -- Regional Association Rule Mining and Scoping from Spatial Data -- Learning from Imbalanced Data: Evaluation Matters. 
520 |a Data mining is one of the most rapidly growing research areas in computer science and statistics. In Volume 1of this three volume series, we have brought together contributions from some of the most prestigious researchers in the fundamental data mining tasks of clustering, association and classification. Each of the chapters is self contained. Theoreticians and applied scientists/ engineers will find this volume valuable. Additionally, it provides a sourcebook for graduate students interested in the current direction of research in these aspects of data mining. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Holmes, Dawn E.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Jain, Lakhmi C.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642430930 
776 0 8 |i Printed edition:  |z 9783642231650 
776 0 8 |i Printed edition:  |z 9783642231674 
830 0 |a Intelligent Systems Reference Library,  |x 1868-4408 ;  |v 23 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-23166-7  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)