Cargando…

Mathematical Aspects of Discontinuous Galerkin Methods

This book introduces the basic ideas for building discontinuous Galerkin methods and, at the same time, incorporates several recent mathematical developments. It is to a large extent self-contained and is intended for graduate students and researchers in numerical analysis. The material covers a wid...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Di Pietro, Daniele Antonio (Autor), Ern, Alexandre (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Mathématiques et Applications, 69
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-22980-0
003 DE-He213
005 20220119054456.0
007 cr nn 008mamaa
008 111102s2012 gw | s |||| 0|eng d
020 |a 9783642229800  |9 978-3-642-22980-0 
024 7 |a 10.1007/978-3-642-22980-0  |2 doi 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Di Pietro, Daniele Antonio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mathematical Aspects of Discontinuous Galerkin Methods  |h [electronic resource] /  |c by Daniele Antonio Di Pietro, Alexandre Ern. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XVII, 384 p. 34 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Mathématiques et Applications,  |x 2198-3275 ;  |v 69 
505 0 |a Basic concepts -- Steady advection-reaction -- Unsteady first-order PDEs -- PDEs with diffusion -- Additional topics on pure diffusion -- Incompressible flows -- Friedhrichs' Systems -- Implementation. 
520 |a This book introduces the basic ideas for building discontinuous Galerkin methods and, at the same time, incorporates several recent mathematical developments. It is to a large extent self-contained and is intended for graduate students and researchers in numerical analysis. The material covers a wide range of model problems, both steady and unsteady, elaborating from advection-reaction and diffusion problems up to the Navier-Stokes equations and Friedrichs' systems. Both finite-element and finite-volume viewpoints are utilized to convey the main ideas underlying the design of the approximation. The analysis is presented in a rigorous mathematical setting where discrete counterparts of the key properties of the continuous problem are identified. The framework encompasses fairly general meshes regarding element shapes and hanging nodes. Salient implementation issues are also addressed. 
650 0 |a Numerical analysis. 
650 0 |a Mathematics-Data processing. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 1 4 |a Numerical Analysis. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
700 1 |a Ern, Alexandre.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642229817 
776 0 8 |i Printed edition:  |z 9783642229794 
830 0 |a Mathématiques et Applications,  |x 2198-3275 ;  |v 69 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-22980-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)