Cargando…

Nonlinear Dynamical Systems in Engineering Some Approximate Approaches /

This book  presents and extends different known methods to solve different types of strong nonlinearities encountered by engineering systems. A better knowledge of the classical methods presented in the first part lead to a better choice of the so-called "base functions". These are absolut...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Marinca, Vasile (Autor), Herisanu, Nicolae (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-22735-6
003 DE-He213
005 20220113113547.0
007 cr nn 008mamaa
008 120103s2011 gw | s |||| 0|eng d
020 |a 9783642227356  |9 978-3-642-22735-6 
024 7 |a 10.1007/978-3-642-22735-6  |2 doi 
050 4 |a TA352-356 
050 4 |a QC20.7.N6 
072 7 |a TBJ  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a TBJ  |2 thema 
072 7 |a GPFC  |2 thema 
082 0 4 |a 515.39  |2 23 
100 1 |a Marinca, Vasile.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Nonlinear Dynamical Systems in Engineering  |h [electronic resource] :  |b Some Approximate Approaches /  |c by Vasile Marinca, Nicolae Herisanu. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XII, 396 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Perturbation method (Lindstedt-Poincaré) -- The method of harmonic balance -- The method of Krylov and Bogolyubov -- The method of multiple scales -- The optimal homotopy asymptotic method -- The optimal homotopy perturbation method -- The optimal variational iteration method -- Optimal parametric iteration method. 
520 |a This book  presents and extends different known methods to solve different types of strong nonlinearities encountered by engineering systems. A better knowledge of the classical methods presented in the first part lead to a better choice of the so-called "base functions". These are absolutely necessary to obtain the auxiliary functions involved in the optimal approaches which are presented in the second part. Every chapter introduces a distinct approximate method applicable to nonlinear dynamical systems. Each approximate analytical approach is accompanied by representative examples related to nonlinear dynamical systems from various fields of engineering. 
650 0 |a Dynamics. 
650 0 |a Nonlinear theories. 
650 0 |a Mathematics-Data processing. 
650 0 |a Nonlinear Optics. 
650 1 4 |a Applied Dynamical Systems. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
650 2 4 |a Nonlinear Optics. 
700 1 |a Herisanu, Nicolae.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642434105 
776 0 8 |i Printed edition:  |z 9783642227363 
776 0 8 |i Printed edition:  |z 9783642227349 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-22735-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)