Cargando…

Topics in Noncommutative Algebra The Theorem of Campbell, Baker, Hausdorff and Dynkin /

Motivated by the importance of the Campbell, Baker, Hausdorff, Dynkin Theorem in many different branches of Mathematics and Physics (Lie group-Lie algebra theory, linear PDEs, Quantum and Statistical Mechanics, Numerical Analysis, Theoretical Physics, Control Theory, sub-Riemannian Geometry), this m...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bonfiglioli, Andrea (Autor), Fulci, Roberta (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Colección:Lecture Notes in Mathematics, 2034
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-22597-0
003 DE-He213
005 20220112160401.0
007 cr nn 008mamaa
008 111010s2012 gw | s |||| 0|eng d
020 |a 9783642225970  |9 978-3-642-22597-0 
024 7 |a 10.1007/978-3-642-22597-0  |2 doi 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 |a Bonfiglioli, Andrea.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Topics in Noncommutative Algebra  |h [electronic resource] :  |b The Theorem of Campbell, Baker, Hausdorff and Dynkin /  |c by Andrea Bonfiglioli, Roberta Fulci. 
250 |a 1st ed. 2012. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2012. 
300 |a XXII, 539 p. 5 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2034 
505 0 |a 1 Historical Overview -- Part I Algebraic Proofs of the CBHD Theorem -- 2 Background Algebra -- 3 The Main Proof of the CBHD Theorem -- 4 Some 'Short' Proofs of the CBHD Theorem -- 5 Convergence and Associativity for the CBHD Theorem -- 6 CBHD, PBW and the Free Lie Algebras -- Part II Proofs of the Algebraic Prerequisites -- 7 Proofs of the Algebraic Prerequisites -- 8 Construction of Free Lie Algebras -- 9 Formal Power Series in One Indeterminate -- 10 Symmetric Algebra. 
520 |a Motivated by the importance of the Campbell, Baker, Hausdorff, Dynkin Theorem in many different branches of Mathematics and Physics (Lie group-Lie algebra theory, linear PDEs, Quantum and Statistical Mechanics, Numerical Analysis, Theoretical Physics, Control Theory, sub-Riemannian Geometry), this monograph is intended to: 1) fully enable readers (graduates or specialists, mathematicians, physicists or applied scientists, acquainted with Algebra or not) to understand and apply the statements and numerous corollaries of the main result; 2) provide a wide spectrum of proofs from the modern literature, comparing different techniques and furnishing a unifying point of view and notation; 3) provide a thorough historical background of the results, together with unknown facts about the effective early contributions by Schur, Poincaré, Pascal, Campbell, Baker, Hausdorff and Dynkin; 4) give an outlook on the applications, especially in Differential Geometry (Lie group theory) and Analysis (PDEs of subelliptic type); 5) quickly enable the reader, through a description of the state-of-art and open problems, to understand the modern literature concerning a theorem which, though having its roots in the beginning of the 20th century, has not ceased to provide new problems and applications. The book assumes some undergraduate-level knowledge of algebra and analysis, but apart from that is self-contained. Part II of the monograph is devoted to the proofs of the algebraic background. The monograph may therefore provide a tool for beginners in Algebra. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Mathematics. 
650 0 |a History. 
650 0 |a Nonassociative rings. 
650 0 |a Geometry, Differential. 
650 1 4 |a Topological Groups and Lie Groups. 
650 2 4 |a History of Mathematical Sciences. 
650 2 4 |a Non-associative Rings and Algebras. 
650 2 4 |a Differential Geometry. 
700 1 |a Fulci, Roberta.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642225963 
776 0 8 |i Printed edition:  |z 9783642225987 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2034 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-22597-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)