Pseudo-periodic Maps and Degeneration of Riemann Surfaces
The first part of the book studies pseudo-periodic maps of a closed surface of genus greater than or equal to two. This class of homeomorphisms was originally introduced by J. Nielsen in 1944 as an extension of periodic maps. In this book, the conjugacy classes of the (chiral) pseudo-periodic mappin...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2011.
|
Edición: | 1st ed. 2011. |
Colección: | Lecture Notes in Mathematics,
2030 |
Temas: | |
Acceso en línea: | Texto Completo |
Sumario: | The first part of the book studies pseudo-periodic maps of a closed surface of genus greater than or equal to two. This class of homeomorphisms was originally introduced by J. Nielsen in 1944 as an extension of periodic maps. In this book, the conjugacy classes of the (chiral) pseudo-periodic mapping classes are completely classified, and Nielsen's incomplete classification is corrected. The second part applies the results of the first part to the topology of degeneration of Riemann surfaces. It is shown that the set of topological types of all the singular fibers appearing in one-parameter holomorphic families of Riemann surfaces is in a bijective correspondence with the set of conjugacy classes of the pseudo-periodic maps of negative twists. The correspondence is given by the topological monodromy. |
---|---|
Descripción Física: | XVI, 240 p. 55 illus. online resource. |
ISBN: | 9783642225345 |
ISSN: | 1617-9692 ; |