Cargando…

Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems École d'Été de Probabilités de Saint-Flour XXXVIII-2008 /

The purpose of these lecture notes is to provide an introduction to the general theory of empirical risk minimization with an emphasis on excess risk bounds and oracle inequalities in penalized problems. In recent years, there have been new developments in this area motivated by the study of new cla...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Koltchinskii, Vladimir (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:École d'Été de Probabilités de Saint-Flour ; 2033
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-22147-7
003 DE-He213
005 20220115015331.0
007 cr nn 008mamaa
008 110727s2011 gw | s |||| 0|eng d
020 |a 9783642221477  |9 978-3-642-22147-7 
024 7 |a 10.1007/978-3-642-22147-7  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Koltchinskii, Vladimir.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems  |h [electronic resource] :  |b École d'Été de Probabilités de Saint-Flour XXXVIII-2008 /  |c by Vladimir Koltchinskii. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a IX, 254 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a École d'Été de Probabilités de Saint-Flour ;  |v 2033 
520 |a The purpose of these lecture notes is to provide an introduction to the general theory of empirical risk minimization with an emphasis on excess risk bounds and oracle inequalities in penalized problems. In recent years, there have been new developments in this area motivated by the study of new classes of methods in machine learning such as large margin classification methods (boosting, kernel machines). The main probabilistic tools involved in the analysis of these problems are concentration and deviation inequalities by Talagrand along with other methods of empirical processes theory (symmetrization inequalities, contraction inequality for Rademacher sums, entropy and generic chaining bounds). Sparse recovery based on l_1-type penalization and low rank matrix recovery based on the nuclear norm penalization are other active areas of research, where the main problems can be stated in the framework of penalized empirical risk minimization, and concentration inequalities and empirical processes tools have proved to be very useful. 
650 0 |a Probabilities. 
650 1 4 |a Probability Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642221460 
776 0 8 |i Printed edition:  |z 9783642221484 
830 0 |a École d'Été de Probabilités de Saint-Flour ;  |v 2033 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-22147-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)