Cargando…

From Objects to Diagrams for Ranges of Functors

This work introduces tools from the field of category theory that make it possible to tackle a number of representation problems that have remained unsolvable to date (e.g. the determination of the range of a given functor). The basic idea is: if a functor lifts many objects, then it also lifts many...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gillibert, Pierre (Autor), Wehrung, Friedrich (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Lecture Notes in Mathematics, 2029
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-21774-6
003 DE-He213
005 20220117031859.0
007 cr nn 008mamaa
008 110707s2011 gw | s |||| 0|eng d
020 |a 9783642217746  |9 978-3-642-21774-6 
024 7 |a 10.1007/978-3-642-21774-6  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Gillibert, Pierre.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a From Objects to Diagrams for Ranges of Functors  |h [electronic resource] /  |c by Pierre Gillibert, Friedrich Wehrung. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a X, 158 p. 19 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2029 
505 0 |a 1 Background -- 2 Boolean Algebras Scaled with Respect to a Poset -- 3 The Condensate Lifting Lemma (CLL) -- 4 Larders from First-order Structures -- 5 Congruence-Preserving Extensions -- 6 Larders from von Neumann Regular Rings -- 7 Discussion. 
520 |a This work introduces tools from the field of category theory that make it possible to tackle a number of representation problems that have remained unsolvable to date (e.g. the determination of the range of a given functor). The basic idea is: if a functor lifts many objects, then it also lifts many (poset-indexed) diagrams. 
650 0 |a Algebra. 
650 0 |a Algebra, Homological. 
650 0 |a Universal algebra. 
650 0 |a Mathematical logic. 
650 0 |a K-theory. 
650 1 4 |a Algebra. 
650 2 4 |a Category Theory, Homological Algebra. 
650 2 4 |a General Algebraic Systems. 
650 2 4 |a Order, Lattices, Ordered Algebraic Structures. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a K-Theory. 
700 1 |a Wehrung, Friedrich.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642217739 
776 0 8 |i Printed edition:  |z 9783642217753 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2029 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-21774-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)