Cargando…

Harmonic Functions and Potentials on Finite or Infinite Networks

Random walks, Markov chains and electrical networks serve as an introduction to the study of real-valued functions on finite or infinite graphs, with appropriate interpretations using probability theory and current-voltage laws. The relation between this type of function theory and the (Newton) pote...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Anandam, Victor (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Lecture Notes of the Unione Matematica Italiana, 12
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-21399-1
003 DE-He213
005 20220113143857.0
007 cr nn 008mamaa
008 110627s2011 gw | s |||| 0|eng d
020 |a 9783642213991  |9 978-3-642-21399-1 
024 7 |a 10.1007/978-3-642-21399-1  |2 doi 
050 4 |a QA404.7-405 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT033000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515.96  |2 23 
100 1 |a Anandam, Victor.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Harmonic Functions and Potentials on Finite or Infinite Networks  |h [electronic resource] /  |c by Victor Anandam. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a X, 141 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9121 ;  |v 12 
505 0 |a 1 Laplace Operators on Networks and Trees -- 2 Potential Theory on Finite Networks -- 3 Harmonic Function Theory on Infinite Networks -- 4 Schrödinger Operators and Subordinate Structures on Infinite Networks -- 5 Polyharmonic Functions on Trees. 
520 |a Random walks, Markov chains and electrical networks serve as an introduction to the study of real-valued functions on finite or infinite graphs, with appropriate interpretations using probability theory and current-voltage laws. The relation between this type of function theory and the (Newton) potential theory on the Euclidean spaces is well-established. The latter theory has been variously generalized, one example being the axiomatic potential theory on locally compact spaces developed by Brelot, with later ramifications from Bauer, Constantinescu and Cornea. A network is a graph with edge-weights that need not be symmetric. This book presents an autonomous theory of harmonic functions and potentials defined on a finite or infinite network, on the lines of axiomatic potential theory. Random walks and electrical networks are important sources for the advancement of the theory. 
650 0 |a Potential theory (Mathematics). 
650 0 |a Functions of complex variables. 
650 0 |a Differential equations. 
650 1 4 |a Potential Theory. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Differential Equations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642213984 
776 0 8 |i Printed edition:  |z 9783642214004 
830 0 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9121 ;  |v 12 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-21399-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)