Cargando…

p-Adic Lie Groups

Manifolds over complete nonarchimedean fields together with notions like tangent spaces and vector fields form a convenient geometric language to express the basic formalism of p-adic analysis. The volume starts with a self-contained and detailed introduction to this language. This includes the disc...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Schneider, Peter (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 344
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-21147-8
003 DE-He213
005 20220115022447.0
007 cr nn 008mamaa
008 110610s2011 gw | s |||| 0|eng d
020 |a 9783642211478  |9 978-3-642-21147-8 
024 7 |a 10.1007/978-3-642-21147-8  |2 doi 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 |a Schneider, Peter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a p-Adic Lie Groups  |h [electronic resource] /  |c by Peter Schneider. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XII, 256 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 2196-9701 ;  |v 344 
505 0 |a Introduction -- Part A: p-Adic Analysis and Lie Groups -- I.Foundations -- I.1.Ultrametric Spaces -- I.2.Nonarchimedean Fields -- I.3.Convergent Series -- I.4.Differentiability -- I.5.Power Series -- I.6.Locally Analytic Functions.-  II.Manifolds -- II.7.Charts and Atlases -- II.8.Manifolds -- II.9.The Tangent Space -- II.10.The Topological Vector Space C^an(M,E), part 1 -- II.11 Locally Convex K-Vector Spaces -- II.12 The Topological Vector Space C^an(M,E), part 2 -- III.Lie Groups -- III.13.Definitions and Foundations -- III.14.The Universal Enveloping Algebra -- III.15.The Concept of Free Algebras -- III.16.The Campbell-Hausdorff Formula -- III.17.The Convergence of the Hausdorff Series -- III.18.Formal Group Laws -- Part B:The Algebraic Theory of p-Adic Lie Groups -- IV.Preliminaries -- IV.19.Completed Group Rings -- IV.20.The Example of the Group Z^d_p -- IV.21.Continuous Distributions -- IV.22.Appendix: Pseudocompact Rings -- V.p-Valued Pro-p-Groups -- V.23.p-Valuations -- V.24.The free Group on two Generators -- V.25.The Operator P -- V.26.Finite Rank Pro-p-Groups -- V.27.Compact p-Adic Lie Groups -- VI.Completed Group Rings of p-Valued Groups -- VI.28.The Ring Filtration -- VI.29.Analyticity -- VI.30.Saturation -- VII.The Lie Algebra -- VII.31.A Normed Lie Algebra -- VII.32.The Hausdorff Series -- VII.33.Rational p-Valuations and Applications -- VII.34.Coordinates of the First and of the Second Kind -- References -- Index. 
520 |a Manifolds over complete nonarchimedean fields together with notions like tangent spaces and vector fields form a convenient geometric language to express the basic formalism of p-adic analysis. The volume starts with a self-contained and detailed introduction to this language. This includes the discussion of spaces of locally analytic functions as topological vector spaces, important for applications in representation theory. The author then sets up the analytic foundations of the theory of p-adic Lie groups and develops the relation between p-adic Lie groups and their Lie algebras. The second part of the book contains, for the first time in a textbook, a detailed exposition of Lazard's algebraic approach to compact p-adic Lie groups, via his notion of a p-valuation, together with its application to the structure of completed group rings. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Associative rings. 
650 0 |a Associative algebras. 
650 1 4 |a Topological Groups and Lie Groups. 
650 2 4 |a Associative Rings and Algebras. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642268663 
776 0 8 |i Printed edition:  |z 9783642211461 
776 0 8 |i Printed edition:  |z 9783642211485 
830 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 2196-9701 ;  |v 344 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-21147-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)