Cargando…

Asymptotic Stability of Steady Compressible Fluids

This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Padula, Mariarosaria (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Lecture Notes in Mathematics, 2024
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-21137-9
003 DE-He213
005 20220117025609.0
007 cr nn 008mamaa
008 110728s2011 gw | s |||| 0|eng d
020 |a 9783642211379  |9 978-3-642-21137-9 
024 7 |a 10.1007/978-3-642-21137-9  |2 doi 
050 4 |a T57-57.97 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBW  |2 thema 
082 0 4 |a 519  |2 23 
100 1 |a Padula, Mariarosaria.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Asymptotic Stability of Steady Compressible Fluids  |h [electronic resource] /  |c by Mariarosaria Padula. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XIV, 235 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2024 
505 0 |a 1 Topics in Fluid Mechanics -- 2 Topics in Stability -- 3 Barotropic Fluids with Rigid Boundary -- 4 Isothermal Fluids with Free Boundaries -- 5 Polytropic Fluids with Rigid Boundary. 
520 |a This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A heat-conducting, viscous polytropic gas. 
650 0 |a Mathematics. 
650 0 |a Mathematical models. 
650 0 |a Differential equations. 
650 0 |a Mathematical physics. 
650 0 |a Continuum mechanics. 
650 0 |a Mechanics, Applied. 
650 1 4 |a Applications of Mathematics. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Differential Equations. 
650 2 4 |a Mathematical Methods in Physics. 
650 2 4 |a Continuum Mechanics. 
650 2 4 |a Engineering Mechanics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642211362 
776 0 8 |i Printed edition:  |z 9783642211386 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2024 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-21137-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)