Cargando…

Combinatorial Machine Learning A Rough Set Approach /

Decision trees and decision rule systems are widely used in different applications as algorithms for problem solving, as predictors, and as a way for knowledge representation. Reducts play key role in the problem of attribute (feature) selection. The aims of this book are (i) the consideration of th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Moshkov, Mikhail (Autor), Zielosko, Beata (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Studies in Computational Intelligence, 360
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-20995-6
003 DE-He213
005 20220712102806.0
007 cr nn 008mamaa
008 110713s2011 gw | s |||| 0|eng d
020 |a 9783642209956  |9 978-3-642-20995-6 
024 7 |a 10.1007/978-3-642-20995-6  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Moshkov, Mikhail.  |e author.  |0 (orcid)0000-0003-0085-9483  |1 https://orcid.org/0000-0003-0085-9483  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Combinatorial Machine Learning  |h [electronic resource] :  |b A Rough Set Approach /  |c by Mikhail Moshkov, Beata Zielosko. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XIV, 182 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 360 
520 |a Decision trees and decision rule systems are widely used in different applications as algorithms for problem solving, as predictors, and as a way for knowledge representation. Reducts play key role in the problem of attribute (feature) selection. The aims of this book are (i) the consideration of the sets of decision trees, rules and reducts; (ii) study of relationships among these objects; (iii) design of algorithms for construction of trees, rules and reducts; and (iv) obtaining bounds on their complexity. Applications for supervised machine learning, discrete optimization, analysis of acyclic programs, fault diagnosis, and pattern recognition are considered also. This is a mixture of research monograph and lecture notes. It contains many unpublished results. However, proofs are carefully selected to be understandable for students. The results considered in this book can be useful for researchers in machine learning, data mining and knowledge discovery, especially for those who are working in rough set theory, test theory and logical analysis of data. The book can be used in the creation of courses for graduate students. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Zielosko, Beata.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642269011 
776 0 8 |i Printed edition:  |z 9783642209949 
776 0 8 |i Printed edition:  |z 9783642209963 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 360 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-20995-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)