Cargando…

Meta-Learning in Computational Intelligence

Computational Intelligence (CI) community has developed hundreds of algorithms for intelligent data analysis, but still many hard problems in computer vision, signal processing or text and multimedia understanding, problems that require deep learning techniques, are open. Modern data mining packages...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Jankowski, Norbert (Editor ), Duch, Włodzisław (Editor ), Grąbczewski, Krzysztof (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Studies in Computational Intelligence, 358
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-20980-2
003 DE-He213
005 20220114085544.0
007 cr nn 008mamaa
008 110713s2011 gw | s |||| 0|eng d
020 |a 9783642209802  |9 978-3-642-20980-2 
024 7 |a 10.1007/978-3-642-20980-2  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Meta-Learning in Computational Intelligence  |h [electronic resource] /  |c edited by Norbert Jankowski, Włodzisław Duch, Krzysztof Grąbczewski. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a IX, 359 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 358 
505 0 |a Universal meta-learning architecture and algorithms -- Meta-learning of instance selection for data summarization -- Choosing the metric: a simple model approach -- Meta-learning Architectures: Collecting, Organizing and Exploiting Meta-knowledge -- Computational intelligence for meta-learning: a promising avenue of research -- Self-organization of supervised models -- Selecting Machine Learning Algorithms Using the Ranking Meta-Learning Approach -- A Meta-Model Perspective and Attribute Grammar Approach to Facilitating the Development of Novel Neural Network Models -- Ontology-Based Meta-Mining of Knowledge Discovery Workflows -- Optimal Support Features for Meta-learning. 
520 |a Computational Intelligence (CI) community has developed hundreds of algorithms for intelligent data analysis, but still many hard problems in computer vision, signal processing or text and multimedia understanding, problems that require deep learning techniques, are open. Modern data mining packages contain numerous modules for data acquisition, pre-processing, feature selection and construction, instance selection, classification, association and approximation methods, optimization techniques, pattern discovery, clusterization, visualization and post-processing. A large data mining package allows for billions of ways in which  these modules can be combined. No human expert can claim to explore and understand all possibilities in the knowledge discovery process. This is where algorithms that learn how to learnl come to rescue. Operating in the space of all available data transformations and optimization techniques these algorithms use meta-knowledge about learning processes automatically extracted from experience of solving diverse problems. Inferences about transformations useful in different contexts help to construct learning algorithms that can uncover various aspects of knowledge hidden in the data. Meta-learning shifts the focus of the whole CI field from individual learning algorithms to the higher level of learning how to learn. This book defines and reveals new theoretical and practical trends in meta-learning, inspiring the readers to further research in this exciting field. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Jankowski, Norbert.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Duch, Włodzisław.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Grąbczewski, Krzysztof.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642268588 
776 0 8 |i Printed edition:  |z 9783642209796 
776 0 8 |i Printed edition:  |z 9783642209819 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 358 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-20980-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)