Cargando…

Dynamic Response of Pre-Stressed Spatially Curved Thin-Walled Beams of Open Profile

This short book analyses the dynamic stability with respect to small perturbations, as well as the local damage of geometrically nonlinear elastic, spatially curved, open section beams with axial precompression. Transient waves, which are the surfaces of strong discontinuity and wherein the stress a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Rossikhin, Yury A. (Autor), Shitikova, Marina (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:SpringerBriefs in Applied Sciences and Technology,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-20969-7
003 DE-He213
005 20220120161356.0
007 cr nn 008mamaa
008 110719s2011 gw | s |||| 0|eng d
020 |a 9783642209697  |9 978-3-642-20969-7 
024 7 |a 10.1007/978-3-642-20969-7  |2 doi 
050 4 |a TA349-359 
072 7 |a TGMD  |2 bicssc 
072 7 |a SCI096000  |2 bisacsh 
072 7 |a TGMD  |2 thema 
082 0 4 |a 620.105  |2 23 
100 1 |a Rossikhin, Yury A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Dynamic Response of Pre-Stressed Spatially Curved Thin-Walled Beams of Open Profile  |h [electronic resource] /  |c by Yury A. Rossikhin, Marina Shitikova. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a VIII, 86 p. 11 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-5318 
505 0 |a Introduction -- Problem Formulation and Governing Equations -- Impact Response of a Thin-walled Beam of Open Profile -- Conclusion -- Appendix. 
520 |a This short book analyses the dynamic stability with respect to small perturbations, as well as the local damage of geometrically nonlinear elastic, spatially curved, open section beams with axial precompression. Transient waves, which are the surfaces of strong discontinuity and wherein the stress and strain fields experience discontinuities, are used as small perturbations; in so doing the discontinuities are considered to be of small magnitude. Such waves are initiated during low-velocity impacts upon thin-walled beams. The theory of discontinuities and the method of ray expansions which allow one to find the desired fields behind the fronts of the transient waves in terms of discontinuities in time-derivatives of the values to be found, are used as the methods of solution for short-time dynamic processes. The example of using the ray expansions for analyzing the impact response of spatially curved thin-walled beams of open profile is demonstrated by solving the problem about the normal impact of an elastic hemispherical-nosed rod upon an elastic arch representing itself a channel-beam curved along an arc of the circumference. The influence of the initial stresses on the dynamic fields has been investigated. 
650 0 |a Mechanics, Applied. 
650 0 |a Solids. 
650 0 |a Mathematics-Data processing. 
650 0 |a Mechanics. 
650 0 |a Civil engineering. 
650 1 4 |a Solid Mechanics. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Classical Mechanics. 
650 2 4 |a Civil Engineering. 
700 1 |a Shitikova, Marina.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642209680 
776 0 8 |i Printed edition:  |z 9783642209703 
830 0 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-5318 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-20969-7  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)