Cargando…

Computational Optimization, Methods and Algorithms

Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency....

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Koziel, Slawomir (Editor ), Yang, Xin-She (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Studies in Computational Intelligence, 356
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-20859-1
003 DE-He213
005 20220116160101.0
007 cr nn 008mamaa
008 110713s2011 gw | s |||| 0|eng d
020 |a 9783642208591  |9 978-3-642-20859-1 
024 7 |a 10.1007/978-3-642-20859-1  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Computational Optimization, Methods and Algorithms  |h [electronic resource] /  |c edited by Slawomir Koziel, Xin-She Yang. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XVI, 284 p. 87 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 356 
505 0 |a Computational Optimization: An Overview -- Optimization Algorithms -- Surrogate-Based Methods -- Derivative-Free Optimization -- Maximum Simulated Likelihood Estimation: Techniques and Applications in Economics -- Optimizing Complex Multi-Location Inventory Models Using Particle Swarm Optimization -- Traditional and Hybrid Derivative-Free Optimization Approaches for Black Box Functions -- Simulation-Driven Design in Microwave Engineering: Methods -- Variable-Fidelity Aerodynamic Shape Optimization -- Evolutionary Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization -- An Enhanced Support Vector Machines Model for Classification and Rule Generation -- Benchmark Problems in Structural Optimization. 
520 |a Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always try to optimize something - whether to minimize the cost and energy consumption, or to maximize profits, outputs, performance and efficiency. In many cases, this search for optimality is challenging, either because of the high computational cost of evaluating objectives and constraints, or because of the nonlinearity, multimodality, discontinuity and uncertainty of the problem functions in the real-world systems. Another complication is that most problems are often NP-hard, that is, the solution time for finding the optimum increases exponentially with the problem size. The development of efficient algorithms and specialized techniques that address these difficulties is of primary importance for contemporary engineering, science and industry.   This book consists of 12 self-contained chapters, contributed from worldwide experts who are working in these exciting areas. The book strives to review and discuss the latest developments concerning optimization and modelling with a focus on methods and algorithms for computational optimization. It also covers well-chosen, real-world applications in science, engineering and industry. Main topics include derivative-free optimization, multi-objective evolutionary algorithms, surrogate-based methods, maximum simulated likelihood estimation, support vector machines, and metaheuristic algorithms. Application case studies include aerodynamic shape optimization, microwave engineering, black-box optimization, classification, economics, inventory optimization and structural optimization. This graduate level book can serve as an excellent reference for lecturers, researchers and students in computational science, engineering and industry. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Koziel, Slawomir.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Yang, Xin-She.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642208584 
776 0 8 |i Printed edition:  |z 9783642208607 
776 0 8 |i Printed edition:  |z 9783662520048 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 356 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-20859-1  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)