Convolution Operators on Groups
This volume is devoted to a systematic study of the Banach algebra of the convolution operators of a locally compact group. Inspired by classical Fourier analysis we consider operators on Lp spaces, arriving at a description of these operators and Lp versions of the theorems of Wiener and Kaplansky-...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2011.
|
Edición: | 1st ed. 2011. |
Colección: | Lecture Notes of the Unione Matematica Italiana,
11 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- 1 Elementary Results
- 2 An Approximation Theorem for CV2(G)
- 3 The Figa-Talamanca Herz Algebra
- 4 The Dual of Ap(G)
- 5 CVp(G) as a Module on Ap(G)
- 6 The Support of a Convolution Operator
- 7 Convolution Operators Supported by Subgroups
- 8 CVp(G) as a Subspace of CV2(G).