Cargando…

Convolution Operators on Groups

This volume is devoted to a systematic study of the Banach algebra of the convolution operators of a locally compact group. Inspired by classical Fourier analysis we consider operators on Lp spaces, arriving at a description of these operators and Lp versions of the theorems of Wiener and Kaplansky-...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Derighetti, Antoine (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Lecture Notes of the Unione Matematica Italiana, 11
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-20656-6
003 DE-He213
005 20220119103916.0
007 cr nn 008mamaa
008 110627s2011 gw | s |||| 0|eng d
020 |a 9783642206566  |9 978-3-642-20656-6 
024 7 |a 10.1007/978-3-642-20656-6  |2 doi 
050 4 |a QA403-403.3 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKD  |2 thema 
082 0 4 |a 515.785  |2 23 
100 1 |a Derighetti, Antoine.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Convolution Operators on Groups  |h [electronic resource] /  |c by Antoine Derighetti. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XII, 171 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9121 ;  |v 11 
505 0 |a 1 Elementary Results -- 2 An Approximation Theorem for CV2(G) -- 3 The Figa-Talamanca Herz Algebra -- 4 The Dual of Ap(G) -- 5 CVp(G) as a Module on Ap(G) -- 6 The Support of a Convolution Operator -- 7 Convolution Operators Supported by Subgroups -- 8 CVp(G) as a Subspace of CV2(G). 
520 |a This volume is devoted to a systematic study of the Banach algebra of the convolution operators of a locally compact group. Inspired by classical Fourier analysis we consider operators on Lp spaces, arriving at a description of these operators and Lp versions of the theorems of Wiener and Kaplansky-Helson. 
650 0 |a Harmonic analysis. 
650 1 4 |a Abstract Harmonic Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642206559 
776 0 8 |i Printed edition:  |z 9783642206573 
830 0 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9121 ;  |v 11 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-20656-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)