Cargando…

Foundations of Large-Scale Multimedia Information Management and Retrieval Mathematics of Perception /

"Foundations of Large-Scale Multimedia Information Management and Retrieval: Mathematics of Perception" covers knowledge representation and semantic analysis of multimedia data and scalability in signal extraction, data mining, and indexing. The book is divided into two parts: Part I - Kno...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chang, Edward Y. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-20429-6
003 DE-He213
005 20220117155418.0
007 cr nn 008mamaa
008 110825s2011 gw | s |||| 0|eng d
020 |a 9783642204296  |9 978-3-642-20429-6 
024 7 |a 10.1007/978-3-642-20429-6  |2 doi 
050 4 |a TA1634 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.37  |2 23 
100 1 |a Chang, Edward Y.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Foundations of Large-Scale Multimedia Information Management and Retrieval  |h [electronic resource] :  |b Mathematics of Perception /  |c by Edward Y. Chang. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XVIII, 291 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part I - Knowledge Representation and Semantic Analysis -- 1. Mathematics of Perception -- 2. Supervised Learning (based on tutorial DASFAA 2003) -- 3. Query Concept Learning (based on IEEE TMM 2005) -- 4. Feature Extraction -- 5. Feature Reduction (based on MM 04, ICME 05, IPAM) -- 6. Similarity (based on MMJ 2002, CIKM 04, ICML 05) -- Part II - Scalability Issues -- 7. Imbalanced Data Learning (based on TKDE 2005) -- 8. Semantics Fusion (based on MM 04, MM05, KDD 08) -- 9. Kernel Machines Speedup (based on SDM 05, KDD 06, NIPS 07) -- 10. Kernel Indexing (based on TKDE 06) -- 11. Put It All Together (based on SPIE 06). 
520 |a "Foundations of Large-Scale Multimedia Information Management and Retrieval: Mathematics of Perception" covers knowledge representation and semantic analysis of multimedia data and scalability in signal extraction, data mining, and indexing. The book is divided into two parts: Part I - Knowledge Representation and Semantic Analysis focuses on the key components of mathematics of perception as it applies to data management and retrieval. These include feature selection/reduction, knowledge representation, semantic analysis, distance function formulation for measuring similarity, and multimodal fusion. Part II - Scalability Issues presents indexing and distributed methods for scaling up these components for high-dimensional data and Web-scale datasets. The book presents some real-world applications and remarks on future research and development directions.  The book is designed for researchers, graduate students, and practitioners in the fields of Computer Vision, Machine Learning, Large-scale Data Mining, Database, and Multimedia Information Retrieval. Dr. Edward Y. Chang was a professor at the Department of Electrical & Computer Engineering, University of California at Santa Barbara, before he joined Google as a research director in 2006. Dr. Chang received his M.S. degree in Computer Science and Ph.D degree in Electrical Engineering, both from Stanford University. 
650 0 |a Computer vision. 
650 0 |a Machinery. 
650 0 |a Data mining. 
650 0 |a Multimedia systems. 
650 1 4 |a Computer Vision. 
650 2 4 |a Machinery and Machine Elements. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Multimedia Information Systems. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642441288 
776 0 8 |i Printed edition:  |z 9783642204289 
776 0 8 |i Printed edition:  |z 9783642204302 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-20429-6  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)