Cargando…

Statistics for High-Dimensional Data Methods, Theory and Applications /

Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical mo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bühlmann, Peter (Autor), van de Geer, Sara (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Springer Series in Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-20192-9
003 DE-He213
005 20220118203701.0
007 cr nn 008mamaa
008 110719s2011 gw | s |||| 0|eng d
020 |a 9783642201929  |9 978-3-642-20192-9 
024 7 |a 10.1007/978-3-642-20192-9  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Bühlmann, Peter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Statistics for High-Dimensional Data  |h [electronic resource] :  |b Methods, Theory and Applications /  |c by Peter Bühlmann, Sara van de Geer. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XVIII, 558 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Series in Statistics,  |x 2197-568X 
505 0 |a Introduction -- Lasso for linear models -- Generalized linear models and the Lasso -- The group Lasso -- Additive models and many smooth univariate functions -- Theory for the Lasso -- Variable selection with the Lasso -- Theory for l1/l2-penalty procedures -- Non-convex loss functions and l1-regularization -- Stable solutions -- P-values for linear models and beyond -- Boosting and greedy algorithms -- Graphical modeling -- Probability and moment inequalities -- Author Index -- Index -- References -- Problems at the end of each chapter. 
520 |a Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods' great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science. 
650 0 |a Statistics . 
650 0 |a Computer science-Mathematics. 
650 0 |a Mathematical statistics. 
650 1 4 |a Statistical Theory and Methods. 
650 2 4 |a Probability and Statistics in Computer Science. 
700 1 |a van de Geer, Sara.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642268571 
776 0 8 |i Printed edition:  |z 9783642201936 
776 0 8 |i Printed edition:  |z 9783642201912 
830 0 |a Springer Series in Statistics,  |x 2197-568X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-20192-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)