Cargando…

Modeling Intention in Email Speech Acts, Information Leaks and Recommendation Models /

Everyday more than half of American adult internet users read or write email messages at least once. The prevalence of email has significantly impacted the working world, functioning as a great asset on many levels, yet at times, a costly liability. In an effort to improve various aspects of work-re...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Carvalho, Vitor R. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Studies in Computational Intelligence, 349
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-19956-1
003 DE-He213
005 20220117201509.0
007 cr nn 008mamaa
008 110328s2011 gw | s |||| 0|eng d
020 |a 9783642199561  |9 978-3-642-19956-1 
024 7 |a 10.1007/978-3-642-19956-1  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Carvalho, Vitor R.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Modeling Intention in Email  |h [electronic resource] :  |b Speech Acts, Information Leaks and Recommendation Models /  |c by Vitor R. Carvalho. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XII, 104 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 349 
505 0 |a Introduction -- Email "Speech Acts" -- Email Information Leaks -- Recommending Email Recipients.-  User Study -- Conclusions.-Email Act Labeling Guidelines -- User Study Supporting Material. 
520 |a Everyday more than half of American adult internet users read or write email messages at least once. The prevalence of email has significantly impacted the working world, functioning as a great asset on many levels, yet at times, a costly liability. In an effort to improve various aspects of work-related communication, this work applies sophisticated machine learning techniques to a large body of email data. Several effective models are proposed that can aid with the prioritization of incoming messages, help with coordination of shared tasks, improve tracking of deadlines, and prevent disastrous information leaks. Carvalho presents many data-driven techniques that can positively impact work-related email communication and offers robust models that may be successfully applied to future machine learning tasks. 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Application software. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Computer and Information Systems Applications. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642267963 
776 0 8 |i Printed edition:  |z 9783642199554 
776 0 8 |i Printed edition:  |z 9783642199578 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 349 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-19956-1  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)