Cargando…

Spherical Tube Hypersurfaces

We examine Levi non-degenerate tube hypersurfaces in complex linear space which are "spherical," that is, locally CR-equivalent to the real hyperquadric. Spherical hypersurfaces are characterized by the condition of the vanishing of the CR-curvature form, so such hypersurfaces are flat fro...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Isaev, Alexander (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Lecture Notes in Mathematics, 2020
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-19783-3
003 DE-He213
005 20220118003542.0
007 cr nn 008mamaa
008 110329s2011 gw | s |||| 0|eng d
020 |a 9783642197833  |9 978-3-642-19783-3 
024 7 |a 10.1007/978-3-642-19783-3  |2 doi 
050 4 |a QA331.7 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKD  |2 thema 
082 0 4 |a 515.94  |2 23 
100 1 |a Isaev, Alexander.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Spherical Tube Hypersurfaces  |h [electronic resource] /  |c by Alexander Isaev. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XII, 230 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2020 
520 |a We examine Levi non-degenerate tube hypersurfaces in complex linear space which are "spherical," that is, locally CR-equivalent to the real hyperquadric. Spherical hypersurfaces are characterized by the condition of the vanishing of the CR-curvature form, so such hypersurfaces are flat from the CR-geometric viewpoint. On the other hand, such hypersurfaces are also of interest from the point of view of affine geometry. Thus our treatment of spherical tube hypersurfaces in this book is two-fold: CR-geometric and affine-geometric. As the book shows, spherical tube hypersurfaces possess remarkable properties. For example, every such hypersurface is real-analytic and extends to a closed real-analytic spherical tube hypersurface in complex space. One of our main goals is to provide an explicit affine classification of closed spherical tube hypersurfaces whenever possible. In this book we offer a comprehensive exposition of the theory of spherical tube hypersurfaces, starting with the idea proposed in the pioneering work by P. Yang (1982) and ending with the new approach put forward by G. Fels and W. Kaup (2009). 
650 0 |a Functions of complex variables. 
650 1 4 |a Several Complex Variables and Analytic Spaces. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642197826 
776 0 8 |i Printed edition:  |z 9783642197840 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2020 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-19783-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)