Cargando…

Cosmology, Quantum Vacuum and Zeta Functions In Honor of Emilio Elizalde /

Some major developments of physics in the last three decades are addressed by highly qualified specialists in different specific fields. They include renormalization problems in QFT, vacuum energy fluctuations and the Casimir effect in different configurations, and a wealth of applications. A number...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Odintsov, Sergey D. (Editor ), Sáez-Gómez, Diego (Editor ), Universitat Politècnica de Cataluny, Prof. Dr. S. Xambó-Descamps (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Springer Proceedings in Physics, 137
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-19760-4
003 DE-He213
005 20220113071453.0
007 cr nn 008mamaa
008 110609s2011 gw | s |||| 0|eng d
020 |a 9783642197604  |9 978-3-642-19760-4 
024 7 |a 10.1007/978-3-642-19760-4  |2 doi 
050 4 |a QB980-991 
072 7 |a PGK  |2 bicssc 
072 7 |a SCI015000  |2 bisacsh 
072 7 |a PGK  |2 thema 
082 0 4 |a 523.1  |2 23 
245 1 0 |a Cosmology, Quantum Vacuum and Zeta Functions  |h [electronic resource] :  |b In Honor of Emilio Elizalde /  |c edited by Sergey D. Odintsov, Diego Sáez-Gómez, Prof. Dr. S. Xambó-Descamps Universitat Politècnica de Cataluny. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a X, 382 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Physics,  |x 1867-4941 ;  |v 137 
505 0 |a Part I QFT and the Casimir Effect -- 1. I. Ya. AREF'EVA. Colliding Hadrons as Cosmic Membranes and Possible Signatures of Lost Momentum -- 2. M. ASOREY, I. Cavero‐Peláez and J. M. Muñoz‐Casta. Vacuum energy and the Topology of the Universe.-3. M. BORDAG and I. Pirozhenko. The Low Temperature Corrections to the Casimir Force Between a Sphere and a Plane -- 4. I. BREVIK. Casimir Effect for the Piecewise Uniform String -- 5. I.L. BUCHBINDER, N.G. Pletnev and I.B. Samsonov. N = 2 and N = 4 Supersymmetric Low‐Energy Effective Actions in Three Dimensions -- 6. M. CHAICHIAN. Colour Confinement, the Goto‐Imamura‐Schwinger Term and Renormalization Group -- 7. J. GOMIS. Non‐Central Extensions of (Super) Poincaré Algebra and (Susy) Electromagnetic Backgrounds -- 8. K. A. MILTON, J. Wagner, P. Parashar, I. Cavero‐Peláez, I. Brevik and S. A. Ellingsen. Multiple Scattering: Dispersion, Temperature Dependence, and Annular Pistons -- Part II Gravity and Cosmology -- 9. M. BOUHMADI‐LÓPEZ. Brane Cosmology with an f(R)‐Contribution -- 10. S. CAPOZZIELLO. f(R)‐Gravity Matched with Large Scale Structure and Cosmological Observations -- 11. S. CARLONI. An Analysis of the Phase Space of Hořava‐Lifshitz Cosmologies -- 12. C. CORDA. Gravitational Waves Astronomy: a Cornerstone for Gravitational Theories -- 13. R. DI CRISCIENZO, L. Vanzo and S. Zerbini. Hamilton‐Jacobi Method and Gravitation -- 14. K. N. Ananda, S. Carloni and P. K. S. DUNSBY. A Characteristic Signature of Fourth Order Gravity -- 15. V. FARAONI. Horizons and Singularity in Clifton's Spherical Solution of f(R)‐vacuum -- 16. R. GARATTINI. Gravitational Zero Point Energy and the Induced Cosmological Constant -- 17. P. GONZALEZ‐DÍAZ. Lensing Effects in Ringholes and the Multiverse Black Holes -- 18. L. LUSANNA. Hamiltonian ADM Gravity in Non‐Harmonic Gauges with Well Defined Non‐Euclidean 3‐Spaces: How Much Darkness can be Explained as a Relativistic Inertial Effect?- 19. J. Beltrán and A. LÓPEZ MAROTO. Dark Energy and Cosmic Magnetic Fields: Electromagnetic Relics from Inflation -- 20. N. Carlevaro, G. MONTANI and M. Lattanzi. On the Viability of Non‐Analytical f(R)‐Theory -- 21. S. NOJIRI. Towards the Unification of Late‐Time Acceleration and Inflation by k‐Essence Model -- 22. N. Deruelle and M. SASAKI. Conformal Equivalence in Classical Gravity: the Example of "Veiled" General Relativity -- 23. L. SEBASTIANI. Finite‐Time Singularities in Modified f(R;G)‐Gravity and Singularity Avoidance -- 24. P. J. SILVA. Asymptotic Darkness in Hořava‐Lifshitz Gravity -- 25. C. F. SOPUERTA and N. Yunes. Testing Modified Gravity with Gravitational Wave Astronomy -- 26. P. K. TOWNSEND. Gravitons in Flatland -- 27. M. M. Sheikh‐Jabbari and A. TUREANU. Very Special Relativity and Noncommutative Space‐Time -- Part III Zeta Functions in Physics and Mathematics.-28. G. Fucci, K. KIRSTEN and P. Morales. Pistons Modelled by Potentials -- 29. V. Moretti. Local ζ‐functions, stress‐energy tensor, field fluctuations, and all that, in curved static spacetime -- 30. V. Muñoz and R. PÉREZ‐MARCO. Ergodic Solenoidal Geometry -- 31. A. VOROS. Zeta‐Regularization and Exact WKB Method for a General 1D Schrödinger equation -- 32. G. Cognola and S. ZERBINI. Generalized Zeta Function Regularization and the Multiplicative Anomaly -- Part IV Non‐standard approaches -- 33. R. M. SANTILLI. Isominkowskian Geometry for Interior Dynamical Problems -- 34. L. YING. Nuclear Fusion Drives Cosmic Expansion -- Index. 
520 |a Some major developments of physics in the last three decades are addressed by highly qualified specialists in different specific fields. They include renormalization problems in QFT, vacuum energy fluctuations and the Casimir effect in different configurations, and a wealth of applications. A number of closely related issues are also considered. The cosmological applications of these theories play a crucial role and are at the very heart of the book; in particular, the possibility to explain in a unified way the whole history of the evolution of the Universe: from primordial inflation to the present day accelerated expansion. Further, a description of the mathematical background underlying many of the physical theories considered above is provided. This includes the uses of zeta functions in physics, as in the regularization problems in QFT already mentioned, specifically in curved space-time, and in Casimir problems as. 
650 0 |a Cosmology. 
650 0 |a Elementary particles (Physics). 
650 0 |a Quantum field theory. 
650 0 |a Gravitation. 
650 0 |a Mathematical physics. 
650 1 4 |a Cosmology. 
650 2 4 |a Elementary Particles, Quantum Field Theory. 
650 2 4 |a Classical and Quantum Gravity. 
650 2 4 |a Mathematical Methods in Physics. 
700 1 |a Odintsov, Sergey D.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Sáez-Gómez, Diego.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Universitat Politècnica de Cataluny, Prof. Dr. S. Xambó-Descamps.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642268434 
776 0 8 |i Printed edition:  |z 9783642197611 
776 0 8 |i Printed edition:  |z 9783642197598 
830 0 |a Springer Proceedings in Physics,  |x 1867-4941 ;  |v 137 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-19760-4  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)