Cargando…

Hyperfinite Dirichlet Forms and Stochastic Processes

This monograph treats the theory of Dirichlet forms from a comprehensive point of view, using "nonstandard analysis." Thus, it is close in spirit to the discrete classical formulation of Dirichlet space theory by Beurling and Deny (1958). The discrete infinitesimal setup makes it possible...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Albeverio, Sergio (Autor), Fan, Ruzong (Autor), Herzberg, Frederik S. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Lecture Notes of the Unione Matematica Italiana, 10
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-19659-1
003 DE-He213
005 20220113094542.0
007 cr nn 008mamaa
008 110527s2011 gw | s |||| 0|eng d
020 |a 9783642196591  |9 978-3-642-19659-1 
024 7 |a 10.1007/978-3-642-19659-1  |2 doi 
050 4 |a QA8.9-10.3 
072 7 |a PBCD  |2 bicssc 
072 7 |a PBC  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a PBCD  |2 thema 
072 7 |a PBC  |2 thema 
082 0 4 |a 511.3  |2 23 
100 1 |a Albeverio, Sergio.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Hyperfinite Dirichlet Forms and Stochastic Processes  |h [electronic resource] /  |c by Sergio Albeverio, Ruzong Fan, Frederik S. Herzberg. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XIV, 284 p. 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9121 ;  |v 10 
520 |a This monograph treats the theory of Dirichlet forms from a comprehensive point of view, using "nonstandard analysis." Thus, it is close in spirit to the discrete classical formulation of Dirichlet space theory by Beurling and Deny (1958). The discrete infinitesimal setup makes it possible to study the diffusion and the jump part using essentially the same methods. This setting has the advantage of being independent of special topological properties of the state space and in this sense is a natural one, valid for both finite- and infinite-dimensional spaces.   The present monograph provides a thorough treatment of the symmetric as well as the non-symmetric case, surveys the theory of hyperfinite Lévy processes, and summarizes in an epilogue the model-theoretic genericity of hyperfinite stochastic processes theory. 
650 0 |a Mathematical logic. 
650 0 |a Probabilities. 
650 1 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Probability Theory. 
700 1 |a Fan, Ruzong.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Herzberg, Frederik S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642196584 
776 0 8 |i Printed edition:  |z 9783642196607 
830 0 |a Lecture Notes of the Unione Matematica Italiana,  |x 1862-9121 ;  |v 10 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-19659-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)