Cargando…

Kernel-based Data Fusion for Machine Learning Methods and Applications in Bioinformatics and Text Mining /

Data fusion problems arise frequently in many different fields.  This book provides a specific introduction to data fusion problems using support vector machines. In the first part, this book begins with a brief survey of additive models and Rayleigh quotient objectives in machine learning, and then...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Yu, Shi (Autor), Tranchevent, Léon-Charles (Autor), Moor, Bart (Autor), Moreau, Yves (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Studies in Computational Intelligence, 345
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Introduction
  • Rayleigh quotient-type problems in machine learning
  • Ln-norm Multiple Kernel Learning and Least Squares Support VectorMachines
  • Optimized data fusion for kernel k-means Clustering
  • Multi-view text mining for disease gene prioritization and clustering
  • Optimized data fusion for k-means Laplacian Clustering
  • Weighted Multiple Kernel Canonical Correlation
  • Cross-species candidate gene prioritization with MerKator
  • Conclusion.