Cargando…

Kernel-based Data Fusion for Machine Learning Methods and Applications in Bioinformatics and Text Mining /

Data fusion problems arise frequently in many different fields.  This book provides a specific introduction to data fusion problems using support vector machines. In the first part, this book begins with a brief survey of additive models and Rayleigh quotient objectives in machine learning, and then...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Yu, Shi (Autor), Tranchevent, Léon-Charles (Autor), Moor, Bart (Autor), Moreau, Yves (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Studies in Computational Intelligence, 345
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-19406-1
003 DE-He213
005 20220120085715.0
007 cr nn 008mamaa
008 110328s2011 gw | s |||| 0|eng d
020 |a 9783642194061  |9 978-3-642-19406-1 
024 7 |a 10.1007/978-3-642-19406-1  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Yu, Shi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Kernel-based Data Fusion for Machine Learning  |h [electronic resource] :  |b Methods and Applications in Bioinformatics and Text Mining /  |c by Shi Yu, Léon-Charles Tranchevent, Bart Moor, Yves Moreau. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XIV, 214 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 345 
505 0 |a Introduction -- Rayleigh quotient-type problems in machine learning -- Ln-norm Multiple Kernel Learning and Least Squares Support VectorMachines -- Optimized data fusion for kernel k-means Clustering -- Multi-view text mining for disease gene prioritization and clustering -- Optimized data fusion for k-means Laplacian Clustering -- Weighted Multiple Kernel Canonical Correlation -- Cross-species candidate gene prioritization with MerKator -- Conclusion. 
520 |a Data fusion problems arise frequently in many different fields.  This book provides a specific introduction to data fusion problems using support vector machines. In the first part, this book begins with a brief survey of additive models and Rayleigh quotient objectives in machine learning, and then introduces kernel fusion as the additive expansion of support vector machines in the dual problem.  The second part presents several novel kernel fusion algorithms and some real applications in supervised and unsupervised learning. The last part of the book substantiates the value of the proposed theories and algorithms in MerKator, an open software to identify disease relevant genes based on the integration of heterogeneous genomic data sources in multiple species. The topics presented in this book are meant for researchers or students who use support vector machines. Several topics addressed in the book may also be interesting to computational biologists who want to tackle data fusion challenges in real applications. The background required of the reader is a good knowledge of data mining, machine learning and linear algebra.  . 
650 0 |a Computational intelligence. 
650 0 |a Artificial intelligence. 
650 0 |a Bioinformatics. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Computational and Systems Biology. 
700 1 |a Tranchevent, Léon-Charles.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Moor, Bart.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Moreau, Yves.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642267512 
776 0 8 |i Printed edition:  |z 9783642194054 
776 0 8 |i Printed edition:  |z 9783642194078 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 345 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-19406-1  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)