Cargando…

Blow-up Theories for Semilinear Parabolic Equations

There is an enormous amount of work in the literature about the blow-up behavior of evolution equations. It is our intention to introduce the theory by emphasizing the methods while seeking to avoid massive technical computations. To reach this goal, we use the simplest equation to illustrate the me...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hu, Bei (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Lecture Notes in Mathematics, 2018
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-18460-4
003 DE-He213
005 20220117185222.0
007 cr nn 008mamaa
008 110317s2011 gw | s |||| 0|eng d
020 |a 9783642184604  |9 978-3-642-18460-4 
024 7 |a 10.1007/978-3-642-18460-4  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Hu, Bei.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Blow-up Theories for Semilinear Parabolic Equations  |h [electronic resource] /  |c by Bei Hu. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a X, 127 p. 2 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2018 
505 0 |a 1 Introduction -- 2 A review of elliptic theories -- 3 A review of parabolic theories -- 4 A review of fixed point theorems.-5 Finite time Blow-up for evolution equations -- 6 Steady-State solutions -- 7 Blow-up rate -- 8 Asymptotically self-similar blow-up solutions -- 9 One space variable case. 
520 |a There is an enormous amount of work in the literature about the blow-up behavior of evolution equations. It is our intention to introduce the theory by emphasizing the methods while seeking to avoid massive technical computations. To reach this goal, we use the simplest equation to illustrate the methods; these methods very often apply to more general equations. 
650 0 |a Differential equations. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 1 4 |a Differential Equations. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642184598 
776 0 8 |i Printed edition:  |z 9783642184611 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2018 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-18460-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)