Cargando…

Mining of Data with Complex Structures

Mining of Data with Complex Structures: - Clarifies the type and nature of data with complex structure including sequences, trees and graphs - Provides a detailed background of the state-of-the-art of sequence mining, tree mining and graph mining. - Defines the essential aspects of the tree mining p...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hadzic, Fedja (Autor), Tan, Henry (Autor), Dillon, Tharam S. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Studies in Computational Intelligence, 333
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-17557-2
003 DE-He213
005 20220114130708.0
007 cr nn 008mamaa
008 110203s2010 gw | s |||| 0|eng d
020 |a 9783642175572  |9 978-3-642-17557-2 
024 7 |a 10.1007/978-3-642-17557-2  |2 doi 
050 4 |a QA76.9.D343 
072 7 |a UNF  |2 bicssc 
072 7 |a UYQE  |2 bicssc 
072 7 |a COM021030  |2 bisacsh 
072 7 |a UNF  |2 thema 
072 7 |a UYQE  |2 thema 
082 0 4 |a 006.312  |2 23 
100 1 |a Hadzic, Fedja.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mining of Data with Complex Structures  |h [electronic resource] /  |c by Fedja Hadzic, Henry Tan, Tharam S. Dillon. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XX, 328 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 333 
505 0 |a Tree Mining Problem -- Algorithm Development Issues -- Tree Model Guided Framework -- TMG Framework for Mining Ordered Subtrees -- TMG Framework for Mining Unordered Subtrees -- Mining Distance-Constrained Embedded Subtrees -- Mining Maximal and Closed Frequent Subtrees -- Tree Mining Applications -- Extension of TMG Framework for Mining Frequent Subsequences -- Graph Mining -- New Research Directions. 
520 |a Mining of Data with Complex Structures: - Clarifies the type and nature of data with complex structure including sequences, trees and graphs - Provides a detailed background of the state-of-the-art of sequence mining, tree mining and graph mining. - Defines the essential aspects of the tree mining problem: subtree types, support definitions, constraints. - Outlines the implementation issues one needs to consider when developing tree mining algorithms (enumeration strategies, data structures, etc.) - Details the Tree Model Guided (TMG) approach for tree mining and provides the mathematical model for the worst case estimate of complexity of mining ordered induced and embedded subtrees. -  Explains the mechanism of the TMG framework for mining ordered/unordered induced/embedded and distance-constrained embedded subtrees. -  Provides a detailed comparison of the different tree mining approaches highlighting the characteristics and benefits of each approach. -  Overviews the implications and potential applications of tree mining in general knowledge management related tasks, and uses Web, health and bioinformatics related applications as case studies. -  Details the extension of the TMG framework for sequence mining - Provides an overview of the future research direction with respect to technical extensions and application areas The primary audience is 3rd year, 4th year undergraduate students, Masters and PhD students and academics. The book can be used for both teaching and research. The secondary audiences are practitioners in industry, business, commerce, government and consortiums, alliances and partnerships to learn how to introduce and efficiently make use of the techniques for mining of data with complex structures into their applications. The scope of the book is both theoretical and practical and as such it will reach a broad market both within academia and industry. In addition, its subject matter is a rapidly emerging field that is critical for efficient analysis of knowledge stored in various domains. 
650 0 |a Data mining. 
650 0 |a Artificial intelligence. 
650 0 |a Engineering mathematics. 
650 0 |a Engineering-Data processing. 
650 1 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Mathematical and Computational Engineering Applications. 
700 1 |a Tan, Henry.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Dillon, Tharam S.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642267031 
776 0 8 |i Printed edition:  |z 9783642175565 
776 0 8 |i Printed edition:  |z 9783642175589 
830 0 |a Studies in Computational Intelligence,  |x 1860-9503 ;  |v 333 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-17557-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)