Cargando…

Cryptography in Constant Parallel Time

Locally computable (NC0) functions are "simple" functions for which every bit of the output can be computed by reading a small number of bits of their input. The study of locally computable cryptography attempts to construct cryptographic functions that achieve this strong notion of simpli...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Applebaum, Benny (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Information Security and Cryptography,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-17367-7
003 DE-He213
005 20230810205410.0
007 cr nn 008mamaa
008 131219s2014 gw | s |||| 0|eng d
020 |a 9783642173677  |9 978-3-642-17367-7 
024 7 |a 10.1007/978-3-642-17367-7  |2 doi 
050 4 |a QA76.9.M35 
072 7 |a UYAM  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a UYAM  |2 thema 
082 0 4 |a 004.0151  |2 23 
100 1 |a Applebaum, Benny.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Cryptography in Constant Parallel Time  |h [electronic resource] /  |c by Benny Applebaum. 
250 |a 1st ed. 2014. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a XVI, 193 p. 3 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Information Security and Cryptography,  |x 2197-845X 
505 0 |a Introduction -- Preliminaries and Definitions -- Randomized Encoding of Functions -- Cryptography in NC0 -- Computationally Private Randomizing Polynomials and Their Applications -- On Pseudorandom Generators with Linear Stretch in NC0 -- Cryptography with Constant Input Locality -- One-Way Functions with Optimal Output Locality -- App. A, On Collections of Cryptographic Primitives. 
520 |a Locally computable (NC0) functions are "simple" functions for which every bit of the output can be computed by reading a small number of bits of their input. The study of locally computable cryptography attempts to construct cryptographic functions that achieve this strong notion of simplicity and simultaneously provide a high level of security. Such constructions are highly parallelizable and they can be realized by Boolean circuits of constant depth.  This book establishes, for the first time, the possibility of local implementations for many basic cryptographic primitives such as one-way functions, pseudorandom generators, encryption schemes and digital signatures. It also extends these results to other stronger notions of locality, and addresses a wide variety of fundamental questions about local cryptography. The author's related thesis was honorably mentioned (runner-up) for the ACM Dissertation Award in 2007, and this book includes some expanded sections and proofs, and notes on recent developments.  The book assumes only a minimal background in computational complexity and cryptography and is therefore suitable for graduate students or researchers in related areas who are interested in parallel cryptography. It also introduces general techniques and tools which are likely to interest experts in the area. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Data structures (Computer science). 
650 0 |a Information theory. 
650 1 4 |a Mathematics of Computing. 
650 2 4 |a Data Structures and Information Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642173660 
776 0 8 |i Printed edition:  |z 9783642173684 
776 0 8 |i Printed edition:  |z 9783662507131 
776 0 8 |i Printed edition:  |z 9783662600054 
830 0 |a Information Security and Cryptography,  |x 2197-845X 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-17367-7  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)