Cargando…

Analyzing Evolutionary Algorithms The Computer Science Perspective /

Evolutionary algorithms is a class of randomized heuristics inspired by natural evolution. They are applied in many different contexts, in particular in optimization, and analysis of such algorithms has seen tremendous advances in recent years.   In this book the author provides an introduction to t...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Jansen, Thomas (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Natural Computing Series,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-17339-4
003 DE-He213
005 20230719193857.0
007 cr nn 008mamaa
008 130125s2013 gw | s |||| 0|eng d
020 |a 9783642173394  |9 978-3-642-17339-4 
024 7 |a 10.1007/978-3-642-17339-4  |2 doi 
050 4 |a QA75.5-76.95 
072 7 |a UYA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a UYA  |2 thema 
082 0 4 |a 004.0151  |2 23 
100 1 |a Jansen, Thomas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Analyzing Evolutionary Algorithms  |h [electronic resource] :  |b The Computer Science Perspective /  |c by Thomas Jansen. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a X, 258 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Natural Computing Series,  |x 2627-6461 
505 0 |a Introduction -- Evolutionary Algorithms and Other Randomized Search Heuristics -- Theoretical Perspectives on Evolutionay Algorithms -- General Limits in Black-Box Optimization -- Methods for the Analysis of Evolutionary Algorithms -- Selected Topics in the Analysis of Evolutionary Algorithms -- App. A, Landau Notation -- App. B, Tail Estimations -- App. C, Martingales and Applications. 
520 |a Evolutionary algorithms is a class of randomized heuristics inspired by natural evolution. They are applied in many different contexts, in particular in optimization, and analysis of such algorithms has seen tremendous advances in recent years.   In this book the author provides an introduction to the methods used to analyze evolutionary algorithms and other randomized search heuristics. He starts with an algorithmic and modular perspective and gives guidelines for the design of evolutionary algorithms. He then places the approach in the broader research context with a chapter on theoretical perspectives. By adopting a complexity-theoretical perspective, he derives general limitations for black-box optimization, yielding lower bounds on the performance of evolutionary algorithms, and then develops general methods for deriving upper and lower bounds step by step. This main part is followed by a chapter covering practical applications of these methods.   The notational and mathematical basics are covered in an appendix, the results presented are derived in detail, and each chapter ends with detailed comments and pointers to further reading. So the book is a useful reference for both graduate students and researchers engaged with the theoretical analysis of such algorithms.  . 
650 0 |a Computer science. 
650 0 |a Computational intelligence. 
650 0 |a Mathematical optimization. 
650 0 |a Artificial intelligence. 
650 1 4 |a Theory of Computation. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Optimization. 
650 2 4 |a Artificial Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642173387 
776 0 8 |i Printed edition:  |z 9783642173400 
776 0 8 |i Printed edition:  |z 9783642436017 
830 0 |a Natural Computing Series,  |x 2627-6461 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-17339-4  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)