Cargando…

Qualitative Spatial Abstraction in Reinforcement Learning

Reinforcement learning has developed as a successful learning approach for domains that are not fully understood and that are too complex to be described in closed form. However, reinforcement learning does not scale well to large and continuous problems. Furthermore, acquired knowledge specific to...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Frommberger, Lutz (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Cognitive Technologies,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-16590-0
003 DE-He213
005 20220119041806.0
007 cr nn 008mamaa
008 101212s2010 gw | s |||| 0|eng d
020 |a 9783642165900  |9 978-3-642-16590-0 
024 7 |a 10.1007/978-3-642-16590-0  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Frommberger, Lutz.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Qualitative Spatial Abstraction in Reinforcement Learning  |h [electronic resource] /  |c by Lutz Frommberger. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XVII, 174 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Cognitive Technologies,  |x 2197-6635 
505 0 |a Foundations of Reinforcement Learning -- Abstraction and Knowledge Transfer in Reinforcement Learning -- Qualitative State Space Abstraction -- Generalization and Transfer Learning with Qualitative Spatial Abstraction -- RLPR - An Aspectualizable State Space Representation -- Empirical Evaluation -- Summary and Outlook. 
520 |a Reinforcement learning has developed as a successful learning approach for domains that are not fully understood and that are too complex to be described in closed form. However, reinforcement learning does not scale well to large and continuous problems. Furthermore, acquired knowledge specific to the learned task, and transfer of knowledge to new tasks is crucial.   In this book the author investigates whether deficiencies of reinforcement learning can be overcome by suitable abstraction methods. He discusses various forms of spatial abstraction, in particular qualitative abstraction, a form of representing knowledge that has been thoroughly investigated and successfully applied in spatial cognition research. With his approach, he exploits spatial structures and structural similarity to support the learning process by abstracting from less important features and stressing the essential ones. The author demonstrates his learning approach and the transferability of knowledge by having his system learn in a virtual robot simulation system and consequently transfer the acquired knowledge to a physical robot. The approach is influenced by findings from cognitive science.   The book is suitable for researchers working in artificial intelligence, in particular knowledge representation, learning, spatial cognition, and robotics.  . 
650 0 |a Artificial intelligence. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Control, Robotics, Automation. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642165894 
776 0 8 |i Printed edition:  |z 9783642266003 
776 0 8 |i Printed edition:  |z 9783642165917 
830 0 |a Cognitive Technologies,  |x 2197-6635 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-16590-0  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)