Cargando…

The Ricci Flow in Riemannian Geometry A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem /

This book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Andrews, Ben (Autor), Hopper, Christopher (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Lecture Notes in Mathematics, 2011
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • 1 Introduction
  • 2 Background Material
  • 3 Harmonic Mappings
  • 4 Evolution of the Curvature
  • 5 Short-Time Existence
  • 6 Uhlenbeck's Trick
  • 7 The Weak Maximum Principle
  • 8 Regularity and Long-Time Existence
  • 9 The Compactness Theorem for Riemannian Manifolds
  • 10 The F-Functional and Gradient Flows
  • 11 The W-Functional and Local Noncollapsing
  • 12 An Algebraic Identity for Curvature Operators
  • 13 The Cone Construction of Böhm and Wilking
  • 14 Preserving Positive Isotropic Curvature
  • 15 The Final Argument.