Cargando…

The Ricci Flow in Riemannian Geometry A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem /

This book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Andrews, Ben (Autor), Hopper, Christopher (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Lecture Notes in Mathematics, 2011
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-16286-2
003 DE-He213
005 20220116214810.0
007 cr nn 008mamaa
008 101109s2011 gw | s |||| 0|eng d
020 |a 9783642162862  |9 978-3-642-16286-2 
024 7 |a 10.1007/978-3-642-16286-2  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Andrews, Ben.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Ricci Flow in Riemannian Geometry  |h [electronic resource] :  |b A Complete Proof of the Differentiable 1/4-Pinching Sphere Theorem /  |c by Ben Andrews, Christopher Hopper. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XVIII, 302 p. 13 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2011 
505 0 |a 1 Introduction -- 2 Background Material -- 3 Harmonic Mappings -- 4 Evolution of the Curvature -- 5 Short-Time Existence -- 6 Uhlenbeck's Trick -- 7 The Weak Maximum Principle -- 8 Regularity and Long-Time Existence -- 9 The Compactness Theorem for Riemannian Manifolds -- 10 The F-Functional and Gradient Flows -- 11 The W-Functional and Local Noncollapsing -- 12 An Algebraic Identity for Curvature Operators -- 13 The Cone Construction of Böhm and Wilking -- 14 Preserving Positive Isotropic Curvature -- 15 The Final Argument. 
520 |a This book focuses on Hamilton's Ricci flow, beginning with a detailed discussion of the required aspects of differential geometry, progressing through existence and regularity theory, compactness theorems for Riemannian manifolds, and Perelman's noncollapsing results, and culminating in a detailed analysis of the evolution of curvature, where recent breakthroughs of Böhm and Wilking and Brendle and Schoen have led to a proof of the differentiable 1/4-pinching sphere theorem. 
650 0 |a Differential equations. 
650 0 |a Geometry, Differential. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a Differential Equations. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
700 1 |a Hopper, Christopher.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642162855 
776 0 8 |i Printed edition:  |z 9783642162879 
830 0 |a Lecture Notes in Mathematics,  |x 1617-9692 ;  |v 2011 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-16286-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)