|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-642-16218-3 |
003 |
DE-He213 |
005 |
20220126180833.0 |
007 |
cr nn 008mamaa |
008 |
110103s2011 gw | s |||| 0|eng d |
020 |
|
|
|a 9783642162183
|9 978-3-642-16218-3
|
024 |
7 |
|
|a 10.1007/978-3-642-16218-3
|2 doi
|
050 |
|
4 |
|a QA276.4-.45
|
072 |
|
7 |
|a PBT
|2 bicssc
|
072 |
|
7 |
|a UFM
|2 bicssc
|
072 |
|
7 |
|a COM077000
|2 bisacsh
|
072 |
|
7 |
|a PBT
|2 thema
|
072 |
|
7 |
|a UFM
|2 thema
|
082 |
0 |
4 |
|a 519.5
|2 23
|
100 |
1 |
|
|a Baragona, Roberto.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Evolutionary Statistical Procedures
|h [electronic resource] :
|b An Evolutionary Computation Approach to Statistical Procedures Designs and Applications /
|c by Roberto Baragona, Francesco Battaglia, Irene Poli.
|
250 |
|
|
|a 1st ed. 2011.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2011.
|
300 |
|
|
|a XII, 276 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Statistics and Computing,
|x 2197-1706
|
505 |
0 |
|
|a Introduction -- Evolutionary Computation -- Evolving Regression Models -- Time Series Linear and Nonlinear Models -- Design of Experiments -- Outliers -- Cluster Analysis.
|
520 |
|
|
|a This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions are infeasible. Evolutionary algorithms represent a powerful and easily understood means of approximating the optimum value in a variety of settings. The proposed text seeks to guide readers through the crucial issues of optimization problems in statistical settings and the implementation of tailored methods (including both stand-alone evolutionary algorithms and hybrid crosses of these procedures with standard statistical algorithms like Metropolis-Hastings) in a variety of applications. This book would serve as an excellent reference work for statistical researchers at an advanced graduate level or beyond, particularly those with a strong background in computer science.
|
650 |
|
0 |
|a Mathematical statistics-Data processing.
|
650 |
|
0 |
|a Image processing-Digital techniques.
|
650 |
|
0 |
|a Computer vision.
|
650 |
|
0 |
|a Algorithms.
|
650 |
|
0 |
|a Medicine-Research.
|
650 |
|
0 |
|a Biology-Research.
|
650 |
|
0 |
|a Sociology-Methodology.
|
650 |
1 |
4 |
|a Statistics and Computing.
|
650 |
2 |
4 |
|a Computer Imaging, Vision, Pattern Recognition and Graphics.
|
650 |
2 |
4 |
|a Algorithms.
|
650 |
2 |
4 |
|a Biomedical Research.
|
650 |
2 |
4 |
|a Sociological Methods.
|
700 |
1 |
|
|a Battaglia, Francesco.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
700 |
1 |
|
|a Poli, Irene.
|e author.
|0 (orcid)0000-0001-7828-2480
|1 https://orcid.org/0000-0001-7828-2480
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642162176
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642266546
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642162190
|
830 |
|
0 |
|a Statistics and Computing,
|x 2197-1706
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-642-16218-3
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|