Cargando…

Algorithmic Learning Theory 21st International Conference, ALT 2010, Canberra, Australia, October 6-8, 2010. Proceedings /

This volume contains the papers presented at the 21st International Conf- ence on Algorithmic Learning Theory (ALT 2010), which was held in Canberra, Australia, October 6-8, 2010. The conference was co-located with the 13th - ternational Conference on Discovery Science (DS 2010) and with the Machine...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Hutter, Marcus (Editor ), Stephan, Frank (Editor ), Vovk, Vladimir (Editor ), Zeugmann, Thomas (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Lecture Notes in Artificial Intelligence, 6331
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-16108-7
003 DE-He213
005 20221012204040.0
007 cr nn 008mamaa
008 100831s2010 gw | s |||| 0|eng d
020 |a 9783642161087  |9 978-3-642-16108-7 
024 7 |a 10.1007/978-3-642-16108-7  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Algorithmic Learning Theory  |h [electronic resource] :  |b 21st International Conference, ALT 2010, Canberra, Australia, October 6-8, 2010. Proceedings /  |c edited by Marcus Hutter, Frank Stephan, Vladimir Vovk, Thomas Zeugmann. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XIII, 421 p. 45 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 6331 
505 0 |a Editors' Introduction -- Editors' Introduction -- Invited Papers -- Towards General Algorithms for Grammatical Inference -- The Blessing and the Curse of the Multiplicative Updates -- Discovery of Abstract Concepts by a Robot -- Contrast Pattern Mining and Its Application for Building Robust Classifiers -- Optimal Online Prediction in Adversarial Environments -- Regular Contributions -- An Algorithm for Iterative Selection of Blocks of Features -- Bayesian Active Learning Using Arbitrary Binary Valued Queries -- Approximation Stability and Boosting -- A Spectral Approach for Probabilistic Grammatical Inference on Trees -- PageRank Optimization in Polynomial Time by Stochastic Shortest Path Reformulation -- Inferring Social Networks from Outbreaks -- Distribution-Dependent PAC-Bayes Priors -- PAC Learnability of a Concept Class under Non-atomic Measures: A Problem by Vidyasagar -- A PAC-Bayes Bound for Tailored Density Estimation -- Compressed Learning with Regular Concept -- A Lower Bound for Learning Distributions Generated by Probabilistic Automata -- Lower Bounds on Learning Random Structures with Statistical Queries -- Recursive Teaching Dimension, Learning Complexity, and Maximum Classes -- Toward a Classification of Finite Partial-Monitoring Games -- Switching Investments -- Prediction with Expert Advice under Discounted Loss -- A Regularization Approach to Metrical Task Systems -- Solutions to Open Questions for Non-U-Shaped Learning with Memory Limitations -- Learning without Coding -- Learning Figures with the Hausdorff Metric by Fractals -- Inductive Inference of Languages from Samplings -- Optimality Issues of Universal Greedy Agents with Static Priors -- Consistency of Feature Markov Processes -- Algorithms for Adversarial Bandit Problems with Multiple Plays -- Online Multiple Kernel Learning: Algorithms and Mistake Bounds -- An Identity for Kernel Ridge Regression. 
520 |a This volume contains the papers presented at the 21st International Conf- ence on Algorithmic Learning Theory (ALT 2010), which was held in Canberra, Australia, October 6-8, 2010. The conference was co-located with the 13th - ternational Conference on Discovery Science (DS 2010) and with the Machine Learning Summer School, which was held just before ALT 2010. The tech- cal program of ALT 2010, contained 26 papers selected from 44 submissions and ?ve invited talks. The invited talks were presented in joint sessions of both conferences. ALT 2010 was dedicated to the theoretical foundations of machine learning and took place on the campus of the Australian National University, Canberra, Australia. ALT provides a forum for high-quality talks with a strong theore- cal background and scienti?c interchange in areas such as inductive inference, universal prediction, teaching models, grammatical inference, formal languages, inductive logic programming, query learning, complexity of learning, on-line learning and relative loss bounds, semi-supervised and unsupervised learning, clustering,activelearning,statisticallearning,supportvectormachines,Vapnik- Chervonenkisdimension,probablyapproximatelycorrectlearning,Bayesianand causal networks, boosting and bagging, information-based methods, minimum descriptionlength,Kolmogorovcomplexity,kernels,graphlearning,decisiontree methods, Markov decision processes, reinforcement learning, and real-world - plications of algorithmic learning theory. DS 2010 was the 13th International Conference on Discovery Science and focused on the development and analysis of methods for intelligent data an- ysis, knowledge discovery and machine learning, as well as their application to scienti?c knowledge discovery. As is the tradition, it was co-located and held in parallel with Algorithmic Learning Theory. 
650 0 |a Artificial intelligence. 
650 0 |a Computer programming. 
650 0 |a Machine theory. 
650 0 |a Algorithms. 
650 0 |a Computer science. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Programming Techniques. 
650 2 4 |a Formal Languages and Automata Theory. 
650 2 4 |a Algorithms. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Computer Science Logic and Foundations of Programming. 
700 1 |a Hutter, Marcus.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Stephan, Frank.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Vovk, Vladimir.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Zeugmann, Thomas.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642161070 
776 0 8 |i Printed edition:  |z 9783642161094 
830 0 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 6331 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-16108-7  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)