Cargando…

Machine Learning in Medical Imaging First International Workshop, MLMI 2010, Held in Conjunction with MICCAI 2010, Beijing, China, September 20, 2010, Proceedings /

The first International Workshop on Machine Learning in Medical Imaging, MLMI 2010, was held at the China National Convention Center, Beijing, China on Sept- ber 20, 2010 in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 2010. Mac...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Wang, Fei (Editor ), Yan, Pingkun (Editor ), Suzuki, Kenji (Editor ), Shen, Dinggang (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Image Processing, Computer Vision, Pattern Recognition, and Graphics ; 6357
Temas:
Acceso en línea:Texto Completo
Tabla de Contenidos:
  • Fast Automatic Detection of Calcified Coronary Lesions in 3D Cardiac CT Images
  • Automated Intervertebral Disc Detection from Low Resolution, Sparse MRI Images for the Planning of Scan Geometries
  • Content-Based Medical Image Retrieval with Metric Learning via Rank Correlation
  • A Hyper-parameter Inference for Radon Transformed Image Reconstruction Using Bayesian Inference
  • Patch-Based Generative Shape Model and MDL Model Selection for Statistical Analysis of Archipelagos
  • Prediction of Dementia by Hippocampal Shape Analysis
  • Multi-Class Sparse Bayesian Regression for Neuroimaging Data Analysis
  • Appearance Normalization of Histology Slides
  • Parallel Mean Shift for Interactive Volume Segmentation
  • Soft Tissue Discrimination Using Magnetic Resonance Elastography with a New Elastic Level Set Model
  • Fast and Automatic Heart Isolation in 3D CT Volumes: Optimal Shape Initialization
  • Relation-Aware Spreadsheets for Multimodal Volume Segmentation and Visualization
  • A Bayesian Learning Application to Automated Tumour Segmentation for Tissue Microarray Analysis
  • Generalized Sparse Classifiers for Decoding Cognitive States in fMRI
  • Manifold Learning for Biomarker Discovery in MR Imaging
  • Optimal Live Cell Tracking for Cell Cycle Study Using Time-Lapse Fluorescent Microscopy Images
  • Fully Automatic Joint Segmentation for Computer-Aided Diagnosis and Planning
  • Accurate Identification of MCI Patients via Enriched White-Matter Connectivity Network
  • Feature Extraction for fMRI-Based Human Brain Activity Recognition
  • Sparse Spatio-temporal Inference of Electromagnetic Brain Sources
  • Optimal Gaussian Mixture Models of Tissue Intensities in Brain MRI of Patients with Multiple-Sclerosis
  • Preliminary Study on Appearance-Based Detection of Anatomical Point Landmarks in Body Trunk CT Images
  • Principal-Component Massive-Training Machine-Learning Regression for False-Positive Reduction in Computer-Aided Detection of Polyps in CT Colonography.