Cargando…

Arithmetic Geometry Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, September 10-15, 2007 /

Arithmetic Geometry can be defined as the part of Algebraic Geometry connected with the study of algebraic varieties over arbitrary rings, in particular over non-algebraically closed fields. It lies at the intersection between classical algebraic geometry and number theory. A C.I.M.E. Summer School...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Colliot-Thélène, Jean-Louis (Autor), Swinnerton-Dyer, Peter (Autor), Vojta, Paul (Autor)
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Corvaja, Pietro (Editor ), Gasbarri, Carlo (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:C.I.M.E. Foundation Subseries ; 2009
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-15945-9
003 DE-He213
005 20220114182715.0
007 cr nn 008mamaa
008 101029s2010 gw | s |||| 0|eng d
020 |a 9783642159459  |9 978-3-642-15945-9 
024 7 |a 10.1007/978-3-642-15945-9  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Colliot-Thélène, Jean-Louis.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Arithmetic Geometry  |h [electronic resource] :  |b Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, September 10-15, 2007 /  |c by Jean-Louis Colliot-Thélène, Peter Swinnerton-Dyer, Paul Vojta ; edited by Pietro Corvaja, Carlo Gasbarri. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XI, 232 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a C.I.M.E. Foundation Subseries ;  |v 2009 
505 0 |a Variétés presque rationnelles, leurs points rationnels et leurs dégénérescences -- Topics in Diophantine Equations -- Diophantine Approximation and Nevanlinna Theory. 
520 |a Arithmetic Geometry can be defined as the part of Algebraic Geometry connected with the study of algebraic varieties over arbitrary rings, in particular over non-algebraically closed fields. It lies at the intersection between classical algebraic geometry and number theory. A C.I.M.E. Summer School devoted to arithmetic geometry was held in Cetraro, Italy in September 2007, and presented some of the most interesting new developments in arithmetic geometry. This book collects the lecture notes which were written up by the speakers. The main topics concern diophantine equations, local-global principles, diophantine approximation and its relations to Nevanlinna theory, and rationally connected varieties. The book is divided into three parts, corresponding to the courses given by J-L Colliot-Thélène Peter Swinnerton Dyer and Paul Vojta. 
650 0 |a Number theory. 
650 0 |a Algebraic geometry. 
650 0 |a Algebra. 
650 1 4 |a Number Theory. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Algebra. 
700 1 |a Swinnerton-Dyer, Peter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Vojta, Paul.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Corvaja, Pietro.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Gasbarri, Carlo.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642159442 
776 0 8 |i Printed edition:  |z 9783642159466 
830 0 |a C.I.M.E. Foundation Subseries ;  |v 2009 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-15945-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)