Cargando…

Modelling Operational Risk Using Bayesian Inference

The management of operational risk in the banking industry has undergone explosive changes over the last decade due to substantial changes in the operational environment. Globalization, deregulation, the use of complex financial products, and changes in information technology have resulted in exposu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Shevchenko, Pavel V. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-15923-7
003 DE-He213
005 20220116193639.0
007 cr nn 008mamaa
008 110118s2011 gw | s |||| 0|eng d
020 |a 9783642159237  |9 978-3-642-15923-7 
024 7 |a 10.1007/978-3-642-15923-7  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a K  |2 bicssc 
072 7 |a BUS061000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a K  |2 thema 
082 0 4 |a 300.727  |2 23 
100 1 |a Shevchenko, Pavel V.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Modelling Operational Risk Using Bayesian Inference  |h [electronic resource] /  |c by Pavel V. Shevchenko. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XVII, 302 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Operational Risk and Basel II -- Loss Distribution Approach -- Calculation of Compound Distribution -- Bayesian approach for LDA -- Addressing the Data Truncation Problem -- Modelling Large Losses -- Modelling Dependence -- List of Distributions -- Selected Simulation Algorithms -- Solutions for Selected Problems -- References -- Index. 
520 |a The management of operational risk in the banking industry has undergone explosive changes over the last decade due to substantial changes in the operational environment. Globalization, deregulation, the use of complex financial products, and changes in information technology have resulted in exposure to new risks which are very different from market and credit risks. In response, the Basel Committee on Banking Supervision has developed a new regulatory framework for capital measurement and standards for the banking sector. This has formally defined operational risk and introduced corresponding capital requirements. Many banks are undertaking quantitative modelling of operational risk using the Loss Distribution Approach (LDA) based on statistical quantification of the frequency and severity of operational risk losses. There are a number of unresolved methodological challenges in the LDA implementation. Overall, the area of quantitative operational risk is very new and different methods are under hot debate. This book is devoted to quantitative issues in LDA. In particular, the use of Bayesian inference is the main focus. Though it is very new in this area, the Bayesian approach is well suited for modelling operational risk, as it allows for a consistent and convenient statistical framework for quantifying the uncertainties involved. It also allows for the combination of expert opinion with historical internal and external data in estimation procedures. These are critical, especially for low-frequency/high-impact operational risks. This book is aimed at practitioners in risk management, academic researchers in financial mathematics, banking industry regulators and advanced graduate students in the area. It is a must-read for anyone who works, teaches or does research in the area of financial risk. 
650 0 |a Statistics . 
650 0 |a Probabilities. 
650 0 |a Finance. 
650 1 4 |a Statistics in Business, Management, Economics, Finance, Insurance. 
650 2 4 |a Statistical Theory and Methods. 
650 2 4 |a Probability Theory. 
650 2 4 |a Financial Economics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642159220 
776 0 8 |i Printed edition:  |z 9783642423536 
776 0 8 |i Printed edition:  |z 9783642159244 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-15923-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)