Cargando…

Machine Learning and Knowledge Discovery in Databases European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010. Proceedings, Part I /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Balcázar, José L. (Editor ), Bonchi, Francesco (Editor ), Gionis, Aristides (Editor ), Sebag, Michèle (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Lecture Notes in Artificial Intelligence, 6321
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-15880-3
003 DE-He213
005 20221012202823.0
007 cr nn 008mamaa
008 100817s2010 gw | s |||| 0|eng d
020 |a 9783642158803  |9 978-3-642-15880-3 
024 7 |a 10.1007/978-3-642-15880-3  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Machine Learning and Knowledge Discovery in Databases  |h [electronic resource] :  |b European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010. Proceedings, Part I /  |c edited by José L. Balcázar, Francesco Bonchi, Aristides Gionis, Michèle Sebag. 
250 |a 1st ed. 2010. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XXX, 620 p. 175 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 6321 
505 0 |a Invited Talks (Abstracts) -- Mining Billion-Node Graphs: Patterns, Generators and Tools -- Structure Is Informative: On Mining Structured Information Networks -- Intelligent Interaction with the Real World -- Mining Experimental Data for Dynamical Invariants - From Cognitive Robotics to Computational Biology -- Hierarchical Learning Machines and Neuroscience of Visual Cortex -- Formal Theory of Fun and Creativity -- Regular Papers -- Porting Decision Tree Algorithms to Multicore Using FastFlow -- On Classifying Drifting Concepts in P2P Networks -- A Unified Approach to Active Dual Supervision for Labeling Features and Examples -- Vector Field Learning via Spectral Filtering -- Weighted Symbols-Based Edit Distance for String-Structured Image Classification -- A Concise Representation of Association Rules Using Minimal Predictive Rules -- Euclidean Distances, Soft and Spectral Clustering on Weighted Graphs -- Adaptive Parallel/Serial Sampling Mechanisms for Particle Filtering in Dynamic Bayesian Networks -- Leveraging Bagging for Evolving Data Streams -- ITCH: Information-Theoretic Cluster Hierarchies -- Coniunge et Impera: Multiple-Graph Mining for Query-Log Analysis -- Process Mining Meets Abstract Interpretation -- Smarter Sampling in Model-Based Bayesian Reinforcement Learning -- Predicting Partial Orders: Ranking with Abstention -- Predictive Distribution Matching SVM for Multi-domain Learning -- Kantorovich Distances between Rankings with Applications to Rank Aggregation -- Characteristic Kernels on Structured Domains Excel in Robotics and Human Action Recognition -- Regret Analysis for Performance Metrics in Multi-Label Classification: The Case of Hamming and Subset Zero-One Loss -- Clustering Vessel Trajectories with Alignment Kernels under Trajectory Compression -- Adaptive Bases for Reinforcement Learning -- Constructing Nonlinear Discriminants from Multiple Data Views -- Learning Algorithms for Link Prediction Based on Chance Constraints -- Sparse Unsupervised Dimensionality Reduction Algorithms -- Asking Generalized Queries to Ambiguous Oracle -- Analysis of Large Multi-modal Social Networks: Patterns and a Generator -- A Cluster-Level Semi-supervision Model for Interactive Clustering -- Software-Defect Localisation by Mining Dataflow-Enabled Call Graphs -- Induction of Concepts in Web Ontologies through Terminological Decision Trees -- Classification with Sums of Separable Functions -- Feature Selection for Reinforcement Learning: Evaluating Implicit State-Reward Dependency via Conditional Mutual Information -- Bagging for Biclustering: Application to Microarray Data -- Hub Gene Selection Methods for the Reconstruction of Transcription Networks -- Expectation Propagation for Bayesian Multi-task Feature Selection -- Graphical Multi-way Models -- Exploration-Exploitation of Eye Movement Enriched Multiple Feature Spaces for Content-Based Image Retrieval -- Graph Regularized Transductive Classification on Heterogeneous Information Networks -- Temporal Maximum Margin Markov Network -- Gaussian Processes for Sample Efficient Reinforcement Learning with RMAX-Like Exploration. 
650 0 |a Artificial intelligence. 
650 0 |a Data structures (Computer science). 
650 0 |a Information theory. 
650 0 |a Application software. 
650 0 |a Information storage and retrieval systems. 
650 0 |a Database management. 
650 0 |a Data mining. 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Data Structures and Information Theory. 
650 2 4 |a Computer and Information Systems Applications. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Database Management. 
650 2 4 |a Data Mining and Knowledge Discovery. 
700 1 |a Balcázar, José L.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Bonchi, Francesco.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Gionis, Aristides.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Sebag, Michèle.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642158797 
776 0 8 |i Printed edition:  |z 9783642158810 
830 0 |a Lecture Notes in Artificial Intelligence,  |x 2945-9141 ;  |v 6321 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-15880-3  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)