|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-642-15880-3 |
003 |
DE-He213 |
005 |
20221012202823.0 |
007 |
cr nn 008mamaa |
008 |
100817s2010 gw | s |||| 0|eng d |
020 |
|
|
|a 9783642158803
|9 978-3-642-15880-3
|
024 |
7 |
|
|a 10.1007/978-3-642-15880-3
|2 doi
|
050 |
|
4 |
|a Q334-342
|
050 |
|
4 |
|a TA347.A78
|
072 |
|
7 |
|a UYQ
|2 bicssc
|
072 |
|
7 |
|a COM004000
|2 bisacsh
|
072 |
|
7 |
|a UYQ
|2 thema
|
082 |
0 |
4 |
|a 006.3
|2 23
|
245 |
1 |
0 |
|a Machine Learning and Knowledge Discovery in Databases
|h [electronic resource] :
|b European Conference, ECML PKDD 2010, Barcelona, Spain, September 20-24, 2010. Proceedings, Part I /
|c edited by José L. Balcázar, Francesco Bonchi, Aristides Gionis, Michèle Sebag.
|
250 |
|
|
|a 1st ed. 2010.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2010.
|
300 |
|
|
|a XXX, 620 p. 175 illus.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Artificial Intelligence,
|x 2945-9141 ;
|v 6321
|
505 |
0 |
|
|a Invited Talks (Abstracts) -- Mining Billion-Node Graphs: Patterns, Generators and Tools -- Structure Is Informative: On Mining Structured Information Networks -- Intelligent Interaction with the Real World -- Mining Experimental Data for Dynamical Invariants - From Cognitive Robotics to Computational Biology -- Hierarchical Learning Machines and Neuroscience of Visual Cortex -- Formal Theory of Fun and Creativity -- Regular Papers -- Porting Decision Tree Algorithms to Multicore Using FastFlow -- On Classifying Drifting Concepts in P2P Networks -- A Unified Approach to Active Dual Supervision for Labeling Features and Examples -- Vector Field Learning via Spectral Filtering -- Weighted Symbols-Based Edit Distance for String-Structured Image Classification -- A Concise Representation of Association Rules Using Minimal Predictive Rules -- Euclidean Distances, Soft and Spectral Clustering on Weighted Graphs -- Adaptive Parallel/Serial Sampling Mechanisms for Particle Filtering in Dynamic Bayesian Networks -- Leveraging Bagging for Evolving Data Streams -- ITCH: Information-Theoretic Cluster Hierarchies -- Coniunge et Impera: Multiple-Graph Mining for Query-Log Analysis -- Process Mining Meets Abstract Interpretation -- Smarter Sampling in Model-Based Bayesian Reinforcement Learning -- Predicting Partial Orders: Ranking with Abstention -- Predictive Distribution Matching SVM for Multi-domain Learning -- Kantorovich Distances between Rankings with Applications to Rank Aggregation -- Characteristic Kernels on Structured Domains Excel in Robotics and Human Action Recognition -- Regret Analysis for Performance Metrics in Multi-Label Classification: The Case of Hamming and Subset Zero-One Loss -- Clustering Vessel Trajectories with Alignment Kernels under Trajectory Compression -- Adaptive Bases for Reinforcement Learning -- Constructing Nonlinear Discriminants from Multiple Data Views -- Learning Algorithms for Link Prediction Based on Chance Constraints -- Sparse Unsupervised Dimensionality Reduction Algorithms -- Asking Generalized Queries to Ambiguous Oracle -- Analysis of Large Multi-modal Social Networks: Patterns and a Generator -- A Cluster-Level Semi-supervision Model for Interactive Clustering -- Software-Defect Localisation by Mining Dataflow-Enabled Call Graphs -- Induction of Concepts in Web Ontologies through Terminological Decision Trees -- Classification with Sums of Separable Functions -- Feature Selection for Reinforcement Learning: Evaluating Implicit State-Reward Dependency via Conditional Mutual Information -- Bagging for Biclustering: Application to Microarray Data -- Hub Gene Selection Methods for the Reconstruction of Transcription Networks -- Expectation Propagation for Bayesian Multi-task Feature Selection -- Graphical Multi-way Models -- Exploration-Exploitation of Eye Movement Enriched Multiple Feature Spaces for Content-Based Image Retrieval -- Graph Regularized Transductive Classification on Heterogeneous Information Networks -- Temporal Maximum Margin Markov Network -- Gaussian Processes for Sample Efficient Reinforcement Learning with RMAX-Like Exploration.
|
650 |
|
0 |
|a Artificial intelligence.
|
650 |
|
0 |
|a Data structures (Computer science).
|
650 |
|
0 |
|a Information theory.
|
650 |
|
0 |
|a Application software.
|
650 |
|
0 |
|a Information storage and retrieval systems.
|
650 |
|
0 |
|a Database management.
|
650 |
|
0 |
|a Data mining.
|
650 |
1 |
4 |
|a Artificial Intelligence.
|
650 |
2 |
4 |
|a Data Structures and Information Theory.
|
650 |
2 |
4 |
|a Computer and Information Systems Applications.
|
650 |
2 |
4 |
|a Information Storage and Retrieval.
|
650 |
2 |
4 |
|a Database Management.
|
650 |
2 |
4 |
|a Data Mining and Knowledge Discovery.
|
700 |
1 |
|
|a Balcázar, José L.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Bonchi, Francesco.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Gionis, Aristides.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
700 |
1 |
|
|a Sebag, Michèle.
|e editor.
|4 edt
|4 http://id.loc.gov/vocabulary/relators/edt
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642158797
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642158810
|
830 |
|
0 |
|a Lecture Notes in Artificial Intelligence,
|x 2945-9141 ;
|v 6321
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-642-15880-3
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-SXCS
|
912 |
|
|
|a ZDB-2-LNC
|
950 |
|
|
|a Computer Science (SpringerNature-11645)
|
950 |
|
|
|a Computer Science (R0) (SpringerNature-43710)
|