Cargando…

The Mathematics of Knots Theory and Application /

The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical ph...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Banagl, Markus (Editor ), Vogel, Denis (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Contributions in Mathematical and Computational Sciences, 1
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-642-15637-3
003 DE-He213
005 20220120232301.0
007 cr nn 008mamaa
008 101126s2011 gw | s |||| 0|eng d
020 |a 9783642156373  |9 978-3-642-15637-3 
024 7 |a 10.1007/978-3-642-15637-3  |2 doi 
050 4 |a QA611-614.97 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBP  |2 thema 
082 0 4 |a 514  |2 23 
245 1 4 |a The Mathematics of Knots  |h [electronic resource] :  |b Theory and Application /  |c edited by Markus Banagl, Denis Vogel. 
250 |a 1st ed. 2011. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a X, 357 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Contributions in Mathematical and Computational Sciences,  |x 2191-3048 ;  |v 1 
505 0 |a Preface -- 1 Knots, Singular Embeddings, and Monodromy -- 2 Lower Bounds on Virtual Crossing Number and Minimal Surface Genus -- 3 A Survey of Twisted Alexander Polynomials -- 4 On Two Categorifications of the Arrow Polynomial for Virtual Knots -- 5 An Adelic Extension of the Jones Polynomial -- 6 Legendrian Grid Number One Knots and Augmentations of their Differential Algebras -- 7 Embeddings of Four-Valent Framed Graphs into 2-Surfaces -- 8 Geometric Topology and Field Theory on 3-Manifolds -- 9 From Goeritz Matrices to Quasi-Alternating Links -- 10 An Overview of Property 2R -- 11 DNA, Knots and Tangles. 
520 |a The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested in the topology of DNA strands. 
650 0 |a Topology. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Geometry, Differential. 
650 0 |a Biomathematics. 
650 0 |a Mathematical physics. 
650 1 4 |a Topology. 
650 2 4 |a Manifolds and Cell Complexes. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Mathematical and Computational Biology. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
700 1 |a Banagl, Markus.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Vogel, Denis.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642266225 
776 0 8 |i Printed edition:  |z 9783642156366 
776 0 8 |i Printed edition:  |z 9783642156380 
830 0 |a Contributions in Mathematical and Computational Sciences,  |x 2191-3048 ;  |v 1 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-642-15637-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)